
Kaufman Document Expiration: 10 June 1993 Page 1

Charles Kaufman

 Digital Equipment Corporation

10 December 1992

DASS

Distributed Authentication Security Service

DRAFT

STATUS OF THIS MEMO

This document is an Internet Draft. Internet Drafts are
working documents of the Internet Engi­
neering Task Force (IETF), its Areas, and its Working
Groups. Nothe that other groups may also
distribute working documents as Internet Drafts.

Internet Drafts are draft documents valid for a maximum of
six months. Internet Drafts may be
updated, replaced, or obsoleted by other documents at any
time. It is not appropriate to use Inter­
net Drafts as reference material or to cite them other than
as a "working draft" or "work in pro­
gress."

Please check the I­D abstract listing contained in each
Internet Draft directory to learn the current
status of this or any other Internet Draft.

This document specifies the Services, Interfaces,
Operation,and Protocols of the DASS Authenti­
cation Service. The DASS Authentication Service is used by
applications to strongly authenticate
and establish shared keys with peer applications.

Distribution of this memo is unlimited.

Contents

1 Introduction ...
...4

1.1 What is DASS? ...
.................................4

1.2 Central Concepts ...
...............................5

1.3 What This Document Won’t Tell You ... 10

1.4 The Relationship between DASS and ISO Standards .. 15

1.5 An Authentication Walkthrough .. 18

2 Services Used ...
.......................................22

Network Working Group

Internet Draft

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 2

2.1 Time Service ...
...................................22

2.2 Random Numbers ...
...........................23

2.3 Naming Service ...
...............................23

3 Services Provided ...
..............................32

3.1 Certificate Contents...
.........................33

3.2 Encrypted Private Key Structure.. 34

3.3 Authentication Tokens ...
....................35

3.4 Credentials ...
......................................36

3.5 CA State ...
..40

3.6 Data types used in the routines .. 40

3.7 Error conditions...
...............................42

3.8 Certificate Maintenance Functions .. 42

3.9 Credential Maintenance Functions... 47

3.10 Authentication Procedures ...
..............53

3.11 DASSlessness Determination Functions .. 72

4 Certificate and message formats ... 74

4.1 ASN.1 encoding ...
..............................74

4.2 Encoding Rules ...
...............................81

4.3 Version numbers and forward compatibility ... 81

4.4 Cryptographic Encoding ...
.................82

Annex A Typical Usage ...
..............................85

A.1 Creating a CA...
..................................85

A.2 Creating a User Principal ...
................86

A.3 Creating a Server Principal ...
.............86

A.4 Booting a Server Principal ...
..............86

A.5 A user logs on to the network .. 87

A.6 An Rlogin (TCP/IP) connection is made ... 87

A.7 A Transport­Independent Connection .. 87

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 3

Annex B Support of the GSSAPI ...
...........88

B.1 Summary of GSSAPI ...
......................88

B.2 Implementation of GSSAPI over DASS .. 89

B.3 Syntax...
..92

Annex C Imported ASN.1 definitions .. 95

Glossary ...
...98

Figures

Figure 1 ­ Authentication Exchange Overview ... 21

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 4

1 Introduction

1.1 What is DASS?

Authentication is a security service. The goal of
authentication is to reliably learn the name of the
originator of a message or request. The classic way by
which people authenticate to computers
(and by which computers authenticate to one another) is
by supplying a password. There are a
number of problems with existing password based schemes
which DASS attempts to solve. The
goal of DASS is to provide authentication services in a
distributed environment which are both
more secure (more difficult for a bad guy to impersonate a
good guy) and easier to use than exist­
ing mechanisms.

In a distributed environment, authentication is particularly
challenging. Users do not simply log
on to one machine and use resources there. Users start
processes on one machine which may
request services on another. In some cases, the second
system must request services from a third
system on behalf of the user. Further, given current
network technology, it is fairly easy to
eavesdrop on conversations between computers and pick up any
passwords that might be going
by.

DASS uses cryptographic mechanisms to provide "strong,
mutual" authentication. Mutual
authentication means that the two parties communicating
each reliably learn the name of the
other. Strong authentication means that in the exchange
neither obtains any information that it
could use to impersonate the other to a third party. This
can’t be done with passwords alone.
Mutual authentication can be done with passwords by having a
"sign" and a "counter­sign" which
the two parties must utter to assure one another of their
identities. But whichever party speaks
first reveals information which can be used by the second
(unauthenticated) party to impersonate
it. Longer sequences (often seen in spy movies) cannot
solve the problem in general. Further,
anyone who can eavesdrop on the conversation can impersonate
either party in a subsequent con­
versation (unless passwords are only good once).
Cryptography provides a means whereby one
can prove knowledge of a secret without revealing it.

People cannot execute cryptographic algorithms in their
heads, and thus cannot strongly authenti­
cate to computers directly. DASS lays the groundwork for
"smart cards": microcomputers sealed
in credit cards which when activated by a PIN will strongly
authenticate to a computer. Until
smart cards are available, the first link from a user to a
DASS node remains vulnerable to eaves­
dropping. DASS mechanisms are constructed so that after the
initial authentication, smart card or
password based authentication looks the same.

Today, systems are constructed to think of user identities
in terms of accounts on individual
computers. If I have accounts on ten machines, there is no
way a priori to see that those ten ac­
counts all belong to the same individual. If I want to be
able to access a resource through any of
the ten machines, I must tell the resource about all ten
accounts. I must also tell the resource
when I get an eleventh account.

DASS supports the concept of global identity and network
login. A user is assigned a name from
a global namespace and that name will be recognized by any
node in the network. (In some

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 5

cases, a resource may be configured as accessible only by a
particular user acting through a par­
ticular node. That is an access control decision, and it is
supported by DASS, but the user is still
known by his global identity). From a practical point of
view, this means that a user can have a
single password (or smart card) which can be used on all
systems which allow him access and
access control mechanisms can conveniently give access to a
user through any computer the user
happens to be logged into. Because a single user secret is
good on all systems, it should never be
necessary for a user to enter a password other than at
initial login. Because cryptographic mecha­
nisms are used, the password should never appear on the network beyond
the initial login node.

DASS was designed as a component of the Distributed System
Security Architecture (DSSA)
(see "The Digital Distributed System Security
Architecture" by M. Gasser, A. Goldstein, C.
Kaufman, and B. Lampson, 1989 National Computer Security
Conference). It is a goal of DSSA
that access control on all systems be based on users’ global
names and the concept of "accounts"
on computers eventually be replaced with unnamed rights to
execute processes on those comput­
ers. Until this happens, computers will continue to support
the concept of "local accounts" and
access controls on resources on those systems will still be
based on those accounts. There is to­
day within the Berkeley rtools running over the Internet
Protocol suite the concept of a ".rhosts
database" which gives access to local accounts from remote
accounts. We envision that those
databases will be extended to support granting access to
local accounts based on DASS global
names as a bridge between the past and the future. DASS
should greatly simplify the administra­
tion of those databases for the (presumably common) case
where a user should be granted access
to an account ignoring his choice of intermediate systems.

1.2 Central Concepts

1.2.1 Strong Authentication with Public Keys

DASS makes heavy use of the RSA Public Key cryptosystem.
The important properties of the
RSA algorithms for purposes of this discussion are:

− It supports the creation of a public/private key pair,
where operations with one key of the
pair reverse the operations of the other, but it is
computationally infeasible to derive the pri­
vate key from the public key.

− It supports the "signing" of a message with the private key,
after which anyone knowing the
public key can "verify" the signature and know that it was
constructed with knowledge of the
private key and that the message was not subsequently altered.

− It supports the "enciphering" of a message by anyone knowing
the public key such that only
someone with knowledge of the private key can recover the message.

With access to the RSA algorithms, it is easy to see how one
could construct a "strong" authenti­
cation mechanism. Each "principal" (user or computer)
would construct a public/private key
pair, publish the public key, and keep secret the private
key. To authenticate to you, I would
write a message, sign it with my private key, and send it to
you. You would verify the message
using my public key and know the message came from me. If
mutual authentication were de­

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 6

sired, you could create an acknowledgment and sign it with
your private key; I could verify it
with your public key and I would know you received my message.

The authentication algorithms used by DASS are considerably
more complex than those de­
scribed in the paragraph above in order to deal with a large
number of practical concerns includ­
ing subtle security threats. Some of these are discussed below.

1.2.2 Timestamps vs. Challenge/Response

Cryptosystems give you the ability to sign messages so that
the receiver has assurance that the
signer of the message knew some cryptographic secret.
Free­standing public key based authenti­
cation is sufficiently expensive that it is unlikely that
anyone would want to sign every message
of an interactive communication, and even if they did they
would still face the threat of someone
rearranging the messages or playing them multiple times.
Authentication generally takes place in
the context of establishing some sort of "connection," where
a conversation will ensue under the
auspices of the single peer­entity authentication. This
connection might be cryptographically
protected against modification or reordering of the
messages, but any such protection would be
largely independent of the authentication which occurred at
the start of the connection. DASS
provides as a side effect of authentication the provision of
a shared key which may be used for
this purpose.

If in our simple minded authentication above, I signed the
message "It’s really me!" with my pri­
vate key and sent it to you, you could verify the signature
and know the message came from me
and give the connection in which this message arrived access
to my resources. Anyone watching
this message over the network, however, could replay it to
any server (just like a password!) and
impersonate me. It is important that the message I send you
only be accepted by you and only
once. I can prevent the message from being useful at any
other server by including your name in
the message. You will only accept the message if you see
your name in it. Keeping you from
accepting the message twice is harder.

There are two "standard" ways of providing this replay
protection. One is called chal­
lenge/response and the other is called timestamp­based.
In a challenge response type scheme, I
tell you I want to authenticate, you generate a "challenge"
(generally a number), and I include the
challenge in the message I sign. You will only accept a
message if it contains the recently gener­
ated challenge and you will make sure you never issue the
same challenge to me twice (either by
using a sequence number, a timestamp, or a random number big
enough that the probability of a
duplicate is negligible). In the timestamp­based
scheme, I include the current time in my mes­
sage. You have a rule that you will not accept messages
more than ­ say ­ five minutes old and
you keep track of all messages you’ve seen in the last five
minutes. If someone replays the mes­
sage within five minutes, you will reject it because you
will remember you’ve seen it before; if
someone replays it after five minutes, you will reject it as timed out.

The disadvantage of the challenge/response based scheme is
that it requires extra messages.
While one­way authentication could otherwise be done with
a single message and mutual authen­
tication with one message in each direction, the
challenge/response scheme always requires at
least three messages.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 7

The disadvantage of the timestamp­based scheme is that it
requires secure synchronized time. If
our clocks drift apart by more than five minutes, you will
reject all of my attempts to authenti­
cate. If a network time service spoofer can convince you to
turn back your clock and then subse­
quently replays an expired message, you will accept it
again. The multicast nature of existing
distributed time services and the likelihood of detection
make this an unlikely threat, but it must
be considered in any analysis of the security of the scheme.
 The timestamp scheme also requires
the server to keep state about all messages seen in the
clock skew interval. To be secure, this
must be kept on stable storage (unless rebooting takes
longer than the permitted clock skew inter­
val).

DASS uses the timestamp­based scheme. The primary
motivations behind this decision were so
that authentication messages could be "piggybacked" on
existing connection establishment mes­
sages and so that DASS would fit within the same "form
factor" (number and direction of mes­
sages) as Kerberos.

1.2.3 Delegation

In a distributed environment, authentication alone is not
enough. When I log onto a computer,
not only do I want to prove my identity to that computer, I
want to use that computer to access
network resources (e.g. file systems, database systems) on
my behalf. My files should (normally)
be protected so that I can access them through any node I
log in through. DASS allows them to
be so protected without allowing all of the systems that I
might ever use to access those files in
my absence. In the process of logging in, my password gives
my login node access to my RSA
secret. It can use that secret to "impersonate" me on any
requests it makes on my behalf. It
should forget all secrets associated with me when I log off.
 This limits the trust placed in com­
puter systems. If someone takes control of a computer, they
can impersonate all people who use
that computer after it is taken over but no others.

Normally when I access a network service, I want to strongly
authenticate to it. That is, I want to
prove my identity to that service, but I don’t want to
allow that service to learn anything that
would allow it to impersonate me. This allows me to use a
service without trusting it for more
than the service it is delivering. When using some
services, for example remote login services, I
may want that service to act on my behalf in calling
additional services. DASS provides a
mechanism whereby I can pass secrets to such services that allow them
to impersonate me.

Future versions of this architecture may allow "limited
delegation" so that a user may delegate to
a server only those rights the server needs to carry out the
user’s wishes. This version can limit
delegation only in terms of time. The information a user
gives a server (other than the initial
login node) can be used to impersonate the user but only
for a limited period of time. Smart
cards will permit that time limitation to apply to the initial login
node as well.

1.2.4 Certification Authorities

A flaw in the strong authentication mechanism described
above is that it assumes that every
"principal" (user and node) knows the public key of every
other principal it wants to authenticate.
If I can fool a server into thinking my public key is
actually your public key, I can impersonate

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 8

you by signing a message, saying it is from you, and having
the server verify the message with
what it thinks is your public key.

To avoid the need to securely install the public key of
every principal in the database of every
other principal, the concept of a "Certification Authority"
was invented. A certification authority
is a principal trusted to act as an introduction service.
Each principal goes to the certification
authority, presents its public key, and proves it has a
particular name (the exact mechanisms for
this vary with the type of principal and the level of
security to be provided). The CA then creates
a "certificate" which is a message containing the name and
public key of the principal, an expira­
tion date, and bookkeeping information signed by the CA’s
private key. All "subscribers" to a
particular CA can then authenticated to one another by
presenting their certificates and proving
knowledge of the corresponding secret. CAs need only act
when new principals are being named
and new private keys created, so that can be maintained under tight
physical security.

The two problems with the scheme as described so far are "revocation"
and "scaleability".

1.2.4.1 Certificate Revocation

Revocation is the process of announcing that a key has (or
may have) fallen into the wrong hands
and should no longer be accepted as proof of some
particular identity. With certificates as de­
scribed above, someone who learns your secret and your
certificate can impersonate you indefi­
nitely ­ even after you have learned of the compromise.
It lacks the ability corresponding to
changing your password. DASS supports two independent
mechanisms for revoking certificates.
In the future, a third may be added.

 One method for revocation is using timeouts and renewals
of certificates. Part of the signed
message which is a certificate may be a time after which
the certificate should not be believed.
Periodically, the CA would renew certificates by signing one
with a later timeout. If a key were
compromised, a new key would be generated and a new
certificate signed. The old certificate
would only be valid until its timeout. Timeouts are not
perfect revocation mechanisms because
they provide only slow revocation (timeouts are typically
measured in months for the load on the
CA and communication with users to be kept manageable) and
they depend on servers having an
accurate source of the current time. Someone who can trick
a server into turning back its clock
can use expired certificates.

The second method is by listing all non­revoked
certificates in the naming service and believing
only certificates found there. The advantage of this
method is that it is almost immediate (the
only delay is for name service "skulking" and caching
delays). The disadvantages are: (1) the
availability of authentication is only as good as the
availability of the naming service and (2) the
security of revocation is only as good as the security of the naming service.

A third method for revocation ­ not currently supported
by DASS ­ is for certification authorities
to periodically issue "revocation lists" which list certificates which
should no longer be accepted.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 9

1.2.4.2 Certification Authority Hierarchy

While using a certification authority as an introduction
service scales much better than having
every principal learn the public key of every other principal
by some out of band means, it has the
problem that it creates a central point of trust. The
certification authority can impersonate any
principal by inventing a new key and creating a certificate
stating that the new key represents the
principal. In a large organization, there may be no
individual who is sufficiently trusted to oper­
ate the CA. Even if there were, in a large organization it
would be impractical to have every
individual authenticate to that single person. Replicating
the CA solves the availability problem
but makes the trust problem worse. When authentication is
to be used in a global context ­ be­
tween companies ­ the concept of a single CA is untenable.

DASS addresses this problem by creating a hierarchy of CAs.
 The CA hierarchy is tied to the
naming hierarchy. For each directory in the namespace,
there is a single CA responsible for cer­
tifying the public keys of its members. That CA will also
certify the public keys of the CAs of all
child directories and of the CA of the parent directory.
With this cross­certification, it is possible
knowing the public key of any CA to verify the public keys
of a series of intermediate CAs and
finally to verify the public key of any principal.

Because the CA hierarchy is tied to the naming hierarchy, the
trust placed in any individual CA is
limited. If a CA is compromised, it can impersonate any of
the principals listed in its directory,
but it cannot impersonate arbitrary prinqcipals. DASS
provides mechanisms for every principal
to know the public key of its "parent" CA ­ the CA
controlling the directory in which it is named.
The result is the following rules for the implications of a compromised CA:

a) A CA can impersonate any principal named in its directory.

b) A CA can impersonate any principal to a server named in its directory.

c) A CA can impersonate any principal named in a subdirectory
to any server not named in the
same subdirectory.

d) A CA can impersonate to any server in a subdirectory any
principal not named in the same
subdirectory.

The implication is that a compromise low in the naming tree
will compromise all principals be­
low that directory while a compromise high in the naming
tree will compromise only the authen­
tication of principals far apart in the naming hierarchy.
In particular, when multiple organiza­
tions share a namespace (as they do in the case of X.500),
the compromise of a CA in one organi­
zation can not result in false authentication within another organization.

DASS uses the X.500 directory hierarchy for principal
naming. At the top of the hierarchy are
names of countries. National authorities are not expected
to establish certification authorities (at
least initially), so an alternative mechanism must be used
to authenticate entities "distant" in the
naming hierarchy. The mechanism for this in DASS is the
"cross­certificate" where a CA certi­
fies the public key for some CA or principal not its parent
or child. By limiting the chains of
certificates they will use to parent certificates followed
by a single "cross certificate" followed by

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 10

child certificates, a DASS implementation can avoid the
need to have CAs near the root of the
tree or can avoid the requirement to trust them even if they
do exist. A special case can also be
supported whereby a global authority whose name is not the
root can certify the local roots of
independent "islands".

1.2.5 User vs. Node Authentication

In concept, DASS mechanisms support the mutual
authentication of two principals regardless of
whether those principals are people, computers, or
applications. Those mechanisms have been
extended, however, to deal with a common case of a pair of
principals acting together (a user and
a node) authenticating to a single principal (a remote
server). This is done by having optionally
in each credentials structure two sets of secrets ­ one
for the user and one for the node. When
authentication is done using such credentials, both secrets
sign the request so the receiving party
can verify that both principals are present.

This setup has a number of advantages. It permits access
controls to be enforced based on both
the identity of the user and the identity of the originating node. It also makes it
possible to define
users of systems who have no network wide identities who can
access network resources on the
basis of node credentials alone. The security of such a
setup is less because a node can imperson­
ate all of its users even when they are not logged in, but it
offers an easier transition from existing
.rhosts based mechanisms because it does not require creation of global
identities for all users.

1.2.6 Protection of User Keys

DASS mechanisms generally deal with authentication between
principals each knowing a private
key. For principals who are people, special mechanisms are
provided for maintaining that private
key. In particular, it many cases it will be most
convenient to keep passwords as secrets rather
than private keys. This architecture specifies a means of
storing private keys encrypted under
passwords. This would provide security as good as hiding a
private key were it not that people
tend to choose passwords from a small space (like words in
a dictionary) such that a password
can be more easily guessed than a private key. To address
this potential weakness, DASS speci­
fies a protocol between a login node and a login agent
whereby the login agent can audit and
limit the rate of password guesses. Use of these features
is optional. A user with a smart card
could store a private key directly and bypass all of these
mechanisms. If users can be forced to
choose "good" passwords, the login agent could be eliminated
and encrypted credentials could be
stored directly in the naming service.

Another way in which user keys are protected is that the
architecture does not require that they be
available except briefly at login. This reduces the threat
of a user walking away from a logged on
workstation and having someone take over the workstation and
extract his key. It also makes the
use of RSA based smart cards practical; the card could keep
the user’s private key and execute
one signature operation at login time to authenticate an entire session.

1.3 What This Document Won’t Tell You

Architecture documents are by their nature difficult to
read. This one is no exception. The reason
is that an architecture document contains the details
sufficient to build interoperable implementa­

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 11

tions, but it is not a design specification. It goes out of
its way to leave out any details which an
implementation could choose without affecting
interoperability. It also does not specify all the
uses of the services provided because these services are
properly regarded as general purpose
tools.

The remainder of this section includes information which is
not properly part of the authentica­
tion architecture, but which may be useful in understanding why the
architecture is the way it is.

1.3.1 How DASS is Embedded in an Operating System

While architecturally DASS does not require any operating
system support in order to be used by
an application (other than the services listed in Section
2), it is expected that actual implementa­
tions of DASS will be closely tied to the operating systems
of host computers. This is done both
for security and for convenience.

In particular, it is expected that when a user logs into a
node, a set of credentials will be created
for that user and then associated by the operating system
with all processes initiated by or on be­
half of the user. When a user delegates to a service, the
remote operating system is expected to
accept the delegation and start up the remote process with
the delegated credentials. Most nodes
are expected to have credentials of their own and support
the concept of user accounts. When
user credentials are created, the node is expected to verify
them in its own context, determine the
appropriate user account, and add node credentials to the created
credentials set.

1.3.2 Forms of Credentials

In the DASS architecture, there is a single data structure
called "Credentials" with a large number
of optional parts. In an implementation, it is possible
that not all of the architecturally allowed
subsets will be supported and credentials structures with
different subsets of the data may be im­
plemented quite differently.

The major categories of credentials likely to be supported in an
implementation are:

− Claimant credentials ­ these are the credentials which would normally be
associated with a
user process in order that it be able to create
authentication tokens. It would contain the
user’s name, login ticket, session private key, and (at
least logically) local node credentials
and cached outgoing contexts.

− Verifier credentials ­ these are the credentials which would normally be associated with a
server which must verify tokens and produce mutual
authentication response tokens. Since
servers may be started by a node on demand, some
representation of verifier credentials must
exist independent of a process. If an operating system
wishes to authenticate a request be­
fore starting a server process, the credentials must exist
in usable form. An implementation
may choose to have all services on a "node" share a verifier
credentials structure, or it may
choose to have each service have its own.

− Combined credentials ­ architecturally, a server may have a structure which is
both claim­
ant credentials and verifier credentials combined so that
the server may act in either role us­

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 12

ing a single structure. There is some overlap in the
contents. There is no requirement, how­
ever, that an implementation support such a structure.

− Stub credentials ­ In the architecture, a credentials structure is created
whenever a token is
accepted. If delegation took place, these are claimant credentials usable by their possessor
to create additional tokens. If no delegation took place,
this structure exists as an architec­
tural place holder against which an implementation may
attempt to authenticate user and
node names. An implementation might choose to implement stub credentials with a differ­
ent mechanism than claimant or verifier credentials. In
particular, it might do whatever user
and node authentication is useful itself and not support this structure at all.

1.3.3 Support for Alternative Certification Authority Implementations

A motivating factor in much of the design of DASS is the
need to protect certification authorities
from compromise. CAs are only used to create certificates
for new principals and to renew them
on expiration (expiration intervals are likely to be
measured in months). They therefore do not
need to be highly available. For maximum security, CAs
could be implemented on standalone
PCs where the hardware, software, and keys can be locked in
a safe when the CA is not in use.
The certificates the CA generates must be delivered to the
naming service to be registered, and a
possible mechanism for this is for the CA to have an RS232
line to an on­line component which
can pass certificates and related information but not login
sessions. The intent would be to make
it implausible to mount a network attack against the CA.
Alternatively, certificates could be car­
ried to the network on a floppy disk.

For CAs to be secure, a whole host of design details must be
done right. The most important of
these is the design of user and system manager interfaces
that make it difficult to "trick" a user or
system manager into doing the wrong thing and certifying an
impostor or revealing a key.
Mechanisms for generating keys must also be carefully
protected to assure that the generated key
cannot be guessed (because of lack of randomness) and is
not recorded where a penetrator can get
it. Because a certificate contains relatively little human
intelligible information (its most impor­
tant components are UIDs and public keys), it will be a
challenge to design a user interface that
assures the human operator only authorizes the signing of
intented certificates. Such considera­
tions are beyond the scope of the architecture (since they
do not affect interoperability), but they
did affect the design in subtle ways. In particular, it does
not assume uniform security throughout
the CA hierarchy and is designed to assure that the
compromise of a CA in one part of the hierar­
chy does not have global implications.

The architecture does not require that CAs be off­line.
The CA could be software that can run on
any node when the proper secret is installed.
Administrative convenience can be gained by inte­
grating the CA with account registration utilities and
naming service maintenance. As such, the
CA would have to be on­line when in use in order to
register certificates in the naming service.
The CA key could be unlocked with a password and the
password could be entered on each use
both to authenticate the CA operator and to assure that
compromise of the host node while the
CA is not in use will not compromise the CA. This design
would be subject to attacks based on
planting Trojan horses in the CA software, but is entirely
interoperable with a more secure imple­
mentation. Realistic tradeoffs must be made between
security, cost, and administrative conven­

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 13

ience bearing in mind that a system is only as secure as its
weakest link and that there is no bene­
fit in making the CA substantially more secure than the other
components of the system.

1.3.4 Services Provided vs. Application Program Interface

Section 3 of this document specifies "abstract interfaces"
to the services provided by DASS. This
means it tells what services are provided, what parameters
are supplied by the caller, and what
data is returned. It does not specify the calling
interfaces. Calling interfaces may be platform, op­
erating system, and language dependent. They do not affect
interoperability; different implemen­
tations which implement completely different calling
interfaces can still interoperate over a net­
work. They do, however, affect portability. A program which
runs on one platform can only run
on another which implements an identical API.

In order to support portability of applications ­ not
just between implementations of DASS but
between implementations of DASS and implementations of
Kerberos ­ a "Generic Security Serv­
ice API" has been designed and is outlined in Annex B. This
API could be the only "published"
interface to DASS services. This interface does not,
however, give access to all the functions pro­
vided by DASS and it provides some non­DASS services. It
does not give access to the "login"
service, for example, so the login function cannot be
implemented in a portable way. Clearly an
implementation must provide some implementation of the login
function, though perhaps only to
one system program and the implementation need not be
portable. Similarly, the Generic API
provides no access to node authentication information, so
applications which use these services
may not be portable.

The Generic API provides services for encryption of user
data for integrity and possibly privacy.
These services are not specified as a part of the DASS
architecture. This is because we envi­
sioned that such services would be provided by the
communications network and not in applica­
tions. These services are provided by the Generic API
because these services are provided by
Kerberos, there exist applications which use these services,
and they are desired in the context of
the IETF­CAT work. The DASS architecture includes a Key
Distribution service so that the en­
cryption functions of the Generic API can be supported and
integrated. Annex B specifies how
those services can be implemented using DASS services.

The Services Provided also differ from the GSSAPI because
there are important extensions envi­
sioned to the API for future applications and it was
important to assure that architecturally those
services were available. In particular, DASS provides the
ability for a principal to have multiple
aliases and for the receiver of an authentication token to
verify any one of them. We want DASS
to support the case where a server only learns the name it
is trying to validate in the course of
evaluating an ACL. This may be long after a connection is
accepted. The Services Provided
section therefore separates the Accept_token function from
the Verify Principal Name. The other
motivation behind a different interface is that DASS
provides node authentication ­ the ability to
authenticate the node from which a request originates as
well as the user. Because Kerberos pro­
vides no such mechanism, the capability is missing from the
GSSAPI, but we expect some appli­
cations will want to make use of it.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 14

1.3.5 Use of a Naming Service

With the exception of the syntactical representation of
names, which is tied to X.500, the DASS
architecture is designed to be independent of the particular
underlying naming service. While the
intention is that certificates be stored in an X.500 naming
service in the fields architecturally re­
served for this purpose in the standard, this specification
allows for the possibility of different
forms of certificate stores. The SPX implementation of DASS
implements its own certificate dis­
tribution service because we did not want to introduce a dependency on
an X.500 naming service.

1.3.6 Key Hiding ­ Credentials

The abstract interfaces described in section 3 specify that
"credentials" and "keys" are the inputs
and outputs of various routines. Credentials structures in
particular contain secret information
which should not be made available to the calling
application. In most cases, keeping this infor­
mation from applications is simply a matter of prudence
­ a misbehaving application can do
nearly as much damage using the credentials as it can by
using the secrets directly. Having ac­
cess to the keys themselves may allow an application to
bypass auditing or leak a key to an ac­
complice who can use it on another node where a large
amount of activity is less likely to be
noticed. In some cases, most dramatically where a "node
key" is present in user credentials, it is
vital that the contents of the credentials be kept out of the hands of
applications.

To accomplish this, a concrete interface is expected to
create "credentials handles" that are passed
in and out of DASS routines. The credentials themselves
would be kept in some portion of mem­
ory where unprivileged code can’t get at them.

There is another aspect of the way credentials are used
which is important to the design of real
implementations. In normal use, a user will create a set of
credentials in the process of logging
on to a system and then use them from many processes or jobs.
 When many processes share a set
of credentials, it is important for the sake of performance
that they share one set of credentials
rather than having a copy of the credentials made for each.
This is because information is cached
in credentials as a side effect of some requests and for
good performance those caches should be
shared.

As an example, consider a system executing a series of copy
commands moving files from one
system to another. The credentials of the user will have
been established when the user logged
on. The first time a copy is requested, a new process will
start up, open a connection to the desti­
nation system, and create a token to authenticate itself.
Creating that token will be an expensive
operation, but information will be computed and "cached" in
the credentials structure which will
allow any subsequent tokens on behalf of that user to that
server to be computed cheaply. After
the copy completes, the connection is closed and the process
terminates. In response to a second
copy request, another new process will be created and a new
token computed. For this operation
to get a performance benefit from the caching, the
information computed by the first process
must somehow make it to the second.

A model for how this caching might work can be seen in the
way Kerberos caches credentials.
Kerberos keeps credentials in a file whose name can be
computed from the name of the local
user. This file is initialized as part of the login process
and its protection is set so that only proc­

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 15

esses running under the UID of the user may read and write
the file. Processes cache information
there; all processes running on behalf of the user share the file.

There are two problems with this scheme: first, on a
diskless node putting information in a file
exposes it to eavesdroppers on the network; second, it does
not accomplish the "key hiding" func­
tion described earlier in this section. In a more secure
implementation, the kernel or a privileged
process would manage some "pool" of credentials for all
processes on a node and would grant
access to them only through the DASS calls. Credentials
structures are complex and varying
length; DASS may organize them as a set of pools rather than
as contiguous blocks of data. All
such design issues are "beyond the scope of the architecture".

Implementations must decide how to control access to
credentials. They could copy the Kerberos
scheme of having credentials available to processes with the
UID of the login session which cre­
ated them and to privileged processes or there may be a more
elaborate mechanism for "passing"
credentials handles from process to process. This design
should probably follow the operating
system mechanisms for passing around local privileges.

1.3.7 Key Hiding ­ Contexts

The "GSSAPI" has a concept of a security context which has
some of the same key hiding prob­
lems as a credentials structure. Security contexts are
used in calls to cryptographically protect
user data (from modification or from disclosure and
modification) using keys established during
authentication. The "services provided" specification says
that create_ and accept_token return a
"shared key" and "instance identifier". The GSSAPI says
that a context handle is returned which
is an integer. A secure implementation would keep the key
and instance identifier in protected
memory and only allow access to them through provided interfaces.

Unlike credentials, there is probably no need to provide
mechanisms for contexts to be shared
between processes. Contexts will normally be associated
with some notion of a communications
"connection" and ends of a connection are not normally
shared. If an implementation chooses to
provide additional services to applications like message
sequencing or duplicate detection, con­
texts will have to contain additional fields. These can be
created and maintained without any ad­
ditional authentication services.

1.4 The Relationship between DASS and ISO Standards

This section provides an introduction to DASS authentication
in terms of the ISO Authentication
Framework (DP10181­2). The purpose of this
introduction is to give the reader an intuitive un­
derstanding of the way DASS works and how its mechanisms
and terminology relate to stan­
dards. Important details have been omitted here but are spelled out
in section 3.

1.4.1 Concepts

The primary goal of authentication is to prevent
impersonation, that is, the pretense to a false
identity. Authentication always involves identification in
some form. Without authentication,
anyone could claim to be whomever they wished and get away with it.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 16

If it didn’t matter with whom one was communicating,
elaborate procedures for authentication
would be unnecessary. However, in most systems, and in
timesharing and distributed processing
environments in particular, the rights of individuals are
often circumscribed by security policy. In
particular, authorization (identity based access control)
and accountability (audit) provisions
could be circumvented if masquerading attempts were impossible to
prevent or detect.

Almost all practical authentication mechanisms suitable for
use in distributed environments rely
on knowledge of some secret information. Most differences
lie in how one presents evidence that
they know the secret. Some schemes, in particular the
familiar simple use of passwords, are quite
susceptible to attack. Generally, the threats to authentication may be
classified as:

− forgery, attempting to guess or otherwise fabricate evidence;

− replay, where one can eavesdrop upon another’s authentication
exchange and learn enough
to impersonate them; and

− interception, where one slips between the communicants and is able to
modify the commu­
nications channel unnoticed.

Most such attacks can be countered by using what is known
as strong authentication. Strong
authentication refers to techniques that permit one to
provide evidence that they know a particular
secret without revealing even a hint about the secret. Thus
neither the entity to whom one is
authenticating, nor an eavesdropper on the conversation can
further their ability to impersonate
the authenticating principal at some future time as the result of an
authentication exchange.

Strong authentication mechanisms, in particular those used
here, rely on cryptographic tech­
niques. In particular, DASS uses public key cryptography.
Note that interception attacks cannot
be countered by strong authentication alone, but generally
need additional security mechanisms
to secure the communication channel, such as data encryption.

1.4.2 Principals and Their Roles

All authentication is on behalf of principals. In DASS the
following types of principals are recog­
nized:

− user principals, normally people with accounts who are responsible for
performing particu­
lar tasks. Generally it is users that are authorized to do
things by virtue of having been
granted access rights, or who are to be held accountable for
specific actions subject to being
audited.

− server principals, which are accessed by users.

− node principals, corresponding to locations where users and servers, or more
accurately,
processes acting on behalf of principals can reside.

Principals can act in one of two capacities:

− the claimant is the active entity seeking to authenticate itself, and

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 17

− the verifier is the passive entity to whom the claimant is authenticating.

Users normally are claimants, whereas servers are usually
verifiers, although sometimes servers
can also be claimants.

There is another kind of principal:

− certification authorities (CA’s) issue certificates which attest to another
principal’s public
key.

1.4.3 Representation, Delegation and Representation Transfer

Of course, although it is users that are responsible for
what the computer does, human beings are
physically unable to directly do anything within a computer
system. In point of fact, it is a proc­
ess executing on behalf of a user that actually performs useful
work. From the point of view of
performing security controlled functions, the process is the
agent, or representative, of the user,
and is authorized by that user to do things on his behalf.
In the terms used in the ISO Authentica­
tion Framework, the user is said to have a representation in the process.

The representation has to come into existence somehow. Delegation refers to the act of creating a
representation. A user is said to create a representation
for themselves by delegating to a process.
If the user creates another process, say by doing an rlogin
on a different computer, a representa­
tion may be needed there as well. This may be accomplished
automatically by a process known
as representation transfer. DASS uses the term delegation to also mean the act of
creating addi­
tional representations on a remote systems.

A representation is instantiated in DASS as credentials. Credentials include the identity of the
principal as well as the cryptographic "state" needed to
engage in strong authentication proce­
dures. Claimant information in credentials enable principals
to authenticate themselves to others,
whereas verifier information in credentials permit
principals to verify the claims of others. Cre­
dentials intended primarily for use by a claimant will be
referred to as claimant credentials in the
text which follows. Credentials intended primarily for use
in verification will be referred to as
verifier credentials. A particular set of credentials may or may not contain
all of the data neces­
sary to be used in both roles. That will depend on the
mechanisms by which the credentials were
created.

In some contexts, but not here, the concept of
representation and/or delegation is sometimes re­
ferred to as proxy. This term is used in ECMA TR/46. We
avoid use of the term because of pos­
sible confusion with an unrelated use of the term in the context of DECnet.

1.4.4 Key Distribution, Replay, Mutual Authentication and Trust

Strong authentication uses cryptographic techniques. The
particular mechanisms used in DASS
result in the distribution of cryptographic keys as a side
effect. These keys are suitable for use for
providing a data origin authentication service and/or a data
confidentiality service between a pair
of authenticated principals.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 18

Replay detection is provided using timestamps on relevant
authentication messages, combined
with remembering previously accepted messages until they
become "stale". This is in contrast to
other techniques, such as challenge and response exchanges.

Authentication can be one­way or mutual. One­way authentication is when only one party, in
DASS the claimant, authenticates to the other. Mutual
authentication provides, in addition,
authentication of the verifier back to the claimant. In
certain communications schemes, for exam­
ple connectionless transfer, only one­way authentication
is meaningful. DASS supports mutual
authentication as a simple extension of one­way
authentication for use in environments where it
makes sense.

DASS potentially can allow many different "trust
relationships" to exist. All principals trust one
or more CA’s to safeguard the certification process.
Principals use certificates as the basis for
authenticating identities, and trust that CA’s which issue
certificates act responsibly. Users expect
CA’s to make sure that certificates (and related secrets)
are only made for principals that the CA
knows or has properly authenticated on its own.

1.5 An Authentication Walkthrough

The OSI Authentication Framework characterizes
authentication as occurring in six phases. This
section attempts to describe DASS in these terms.

1.5.1 Installation

In this phase, principal certificates are created, as is the
additional information needed to create
claimant and verifier credentials. OSI defines three sub­phases:

− Enrollment. In DASS, this is the definition of a principal in terms of a key, name and UID.

− Validation, confirmation of identity to the satisfaction of the CA,
after which the CA gener­
ates a certificate.

− Confirmation. In DASS, this is the act of providing the user with the
certificate and with the
CA’s own name, key and UID, followed up by the user creating a trusted authority for that
CA. A trusted authority is a certificate for the CA signed by the user.

Included in this step in DASS is the posting of the
certificate so as to be available to principals
wishing to verify the principal’s identity. In addition, the
user principal saves the trusted authority
so as to be available when it creates credentials.

1.5.2 Distribution

DASS distributes certificates by placing them in the name service.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 19

1.5.3 Acquisition

Whenever principals wish to authenticate to one another,
they access the Name Service to obtain
whatever public key certificates they need and create the
necessary credentials. In DASS, acquisi­
tion means obtaining credentials.

Claimant credentials implement the representation of a
principal in a process, or, more accu­
rately, provide a representation of the principal for use by
a process. In making this representa­
tion, the principal delegates to a temporary delegation
key. In this fashion the claimant’s long
term principal key need not remain in the system.

Claimant credentials are made by invoking the get
credentials primitive. Claimant credentials are
a DASS specific data structure containing:

− a name

− a ticket, a data structure containing

• a validity interval,

• UID, and

• (temporary) delegation public key, along with a

• digital signature on the above made with the principal private key

− the delegation private key

Optionally in addition, there may be credential information
relating to the node on which the user
is logged in and the account on that node. A detailed
description of all the information found in
credentials can be found in section 3.

Verifier credentials are made with initialize_server.
Verifier credentials consist of a principal
(long term) private key. The rationale is that these
credentials are usually needed by servers that
must be able to run indefinitely without re­entry of any long term key.

In addition, claimants and verifiers have a trusted authority, which consists of information
about a trusted CA. That information is its:

− name (this will appear in the "issuer" field in principal certificates),

− public key (to use in verifying certificates issued by that CA), and

− UID.

Trusted authorities are used by principals to verify
certificates for other principals’ public keys.
CAs are arranged in a hierarchy corresponding to the naming
hierarchy, where each directory in
the naming hierarchy is controlled by a single CA. Each CA
certifies the CA of its parent direc­
tory, the CAs of each of its child directories, and
optionally CAs elsewhere in the naming hierar­
chy (mainly to deal with the case where the directories up
to a common ancestor lack CAs).

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 20

Even though a principal has only a single CA as a trusted
authority, it can securely obtain the
public key of any principal in the namespace by "walking the CA hierarchy".

1.5.4 Transfer

The DASS exchange of authentication information is
illustrated in Figure 1­1. During the transfer
phase, the DASS claimant sends an authentication token to the verifier. Authentication tokens
are made by invoking the create_token primitive. The
authentication token is cryptographically
protected and specified as a DASS data structure in ASN.1. The
authentication token includes:

− a ticket,

− a DES authenticating key encrypted using the intended verifier’s public key

− one of the following:

• if delegation is not being performed, a digital signature on
the encrypted DES key using
the delegation private key, or

• if delegation is being performed, sending the delegation
private key, DES encrypted using
the DES authenticating key

− an authenticator, which is a cryptographic checksum made using the DES authenticating
key over a buffer containing

• a timestamp

• any application supplied "channel bindings". For example,
addresses or other context in­
formation. The purpose of this field is to thwart substitution and
replay attacks.

− additional optional information concerning node authentication and context.

As a side effect, after init_authentication_context, the
caller receives a local authentication con­
text, a data structure containing:

− the DES key, and

− if mutual authentication is being requested, the expected response.

In order to construct an authentication token, the claimant
needs to access the verifier’s public
key certificate from the Name Service (labeled CDC, for
Certificate Distribution Center, in the
figure).

Note that while an authenticator can only be used once, it
is permissible to re­establish the same
local authentication context multiple times. That is, the
ticket and DES key establishment compo­
nents of the authentication token may have a relatively long
lifetime. This permits a performance
improvement in that repeated applications of public key
operations can be alleviated if one
caches authentication contexts, along with other components
from a successfully used authentica­
tion token and the associated verified principal public key
value. It is a relatively inexpensive op­
eration to create (and verify) "fresh" authenticators based on
cached authentication context.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 21

 Claimant Actions | Communications | Verifier Actions
 | |
 verifier name | |
 | | |
 | | +­­­+|

\­­­­­­­­­­­­­­­­­—
55­>| ||
 trusted | | ||
authorities | |CDC||
 | +­­­­­­­­­­­+ |certificate| ||
 | | Verify
|<­­­­­­­­­­­­­| ||
 \­­­>|Certificate| | +­­­+|
 +­­­­­­­­­­­+ | |
 Claimant | | |
credentials Verifier | | Verifier
 | Public Key | | Credentials
 | | | | |
 | V | | V
 | +­­­­­­­­­­­+ |
Authentication | +­­­­­­­­­­­+
 | | Make | | Token | | Check | Replay
 \­­­>| Token
|­­­­­­­­­­­­­­­­­�
5­­>| Token |<­­>Cache
 +­­­­­­­­­­­+ |
 | +­­­­­­­­­­­+
 DES <­­­/ | | | | |
\­­­­­>DES
 key | | | /Claimant key
 | | |/Public Key
 | | / | trusted
 | | Claimant /| V authorities
 | |+­­­+ Name / |
+­­­­­­­­­­­+ |
 authentication || |<­­­­­­­/ | |
Verify |<­­­­/
 context || |certificate| |Certificate|
 |
||CDC|­­­­­­­­­­­­>|
|­­>accept/
 | || | |
+­­­­­­­­­­­+ reject
 | || | | | \
 | |+­­­+ |authentication\
 V | mutual | context V
 +­­­­­­­­­­­+ |
authentication | | claimant
 /­­| Accept | | response |
+­­­­­­­­­­+credentials
 V | Mutual
|<­­­­­­­­­­­­­­­­­—
55­­| Make |(delegation)
 accept/ +­­­­­­­­­­­+ |
 | | Response |
 reject | |
+­­­­­­­­­­+
 | |

Figure 1 ­ Authentication Exchange Overview

1.5.5 Verification

Upon receipt of an authentication token, the verifier
extracts the DES key using its verifier cre­
dentials, accesses the Name Service (labeled CDC for
Certificate Distribution Center) to obtain

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 22

the certificates needed to perform cryptographic checks on
the incoming information, and verifies
all of the signatures on the received certificates and the
authentication token. Verification can re­
sult in creation of new claimant credentials if delegation is performed.

As part of this process, verified authenticators are retained for a
suitable timeout period.

1.5.6 Unenrolment

This is the removal of information from the Name Service.
The only other form of revocation
supported by DASS is certificate timeout. Every certificate
contains an expiration time (expected
in ordinary use to be about a year from its signing date).
 DASS does not currently support the
revocation lists in X.509.

2 Services Used

Aside from operating system services needed to maintain its
internal state, DASS relies on a
global distributed database in which to store its
certificates, a reliable source of time, and a source
of random numbers for creating cryptographic keys.

2.1 Time Service

DASS requires access to the current time in several of its
algorithms. Some of its uses of time
are security critical. In others, network synchronization
of clocks is required. DASS does not,
however, depend on having a single source of time which is both secure
and tightly synchronized.

The requirements on system provided time are:

− For purposes of validating certificates and tickets, the
system needs access to know the date
and time accurate to within a few hours with no particular
synchronization requirements. If
this time is inaccurate, then valid requests may be rejected
and expired messages may be ac­
cepted. Certificate expiration is a backup revocation
mechanism, so this can only cause a
security compromise in the event of multiple failures. In
theory, this could be provided by
having a local clock on every node accurate to within a few
hours over the life of the product
to provide this function. If an insecure network time
service is used to provide this time,
there are theoretical security threats, but they are
expected to be logistically impractical to
exploit.

− For purposes of detecting replay of authentication tokens,
the system needs access to a
strictly monotonic time source which is reasonably synchronized across the
network (within
a few minutes) for the system to work, but inaccuracy does
not present a security threat ex­
cept as noted below. It may constitute an availability
threat because valid requests may be
rejected. In order to get strict monotonicity in the
presence of a rapid series of requests, time
must be returned with high precision. There is no
requirement for a high degree of accuracy.
Inaccurate time could present a security threat in the
following scenario: if a client’s clock is
made sufficiently fast that its tokens are rejected, someone
harvesting those tokens from the

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 23

wire could replay them later and impersonate the client.
In some environments, this might
be an easier threat than harvesting tokens and preventing their delivery.

− For purposes of aging stale entries from caches, DASS
requires reasonably accurate timing
of intervals. To the extent that intervals are reported as shorter than
the actually were, revo­
cation of certificates from the naming service may not be as timely as
it should be.

2.2 Random Numbers

In order to generate keys, DASS needs a source of
"cryptographic quality" random numbers.
Cryptographic quality means that knowing any of the "random
numbers" returned from a series
and knowing all state information which is not protected,
an attacker cannot predict any of the
other numbers in the series. Hardware sources are ideal,
but there are alternative techniques
which may also be acceptable. A 56 bit "truly random" seed
(say from a series of coin tosses)
could be used as a DES key to encrypt an infinite length
known text block in CBC mode to pro­
duce a pseudo­random sequence provided the key and
current point in the sequence were ade­
quately protected. There is considerable controversy
surrounding what constitutes cryptographic
quality random numbers, and it is not a goal of this document to resolve it.

2.3 Naming Service

DASS stores creates and uses "certificates" associated with
every principal in the system, and en­
crypted credentials associated with most. This information
is stored in an on­line service associ­
ated with the principal being certified. The long term
vision is for DASS to use an X.500 naming
service, and DASS will from its inception authenticate X.500
names. To avoid a dependence on
having an X.500 naming service available (and to gain the
benefits of a "login agent" that con­
trols password guessing), an alternative certificate distribution
center protocol is also described.

The specific requirements DASS places on the naming service are:

− It must be highly available. A user’s naming service entry
must be available to any node
where the user is to obtain services (or service will be
denied). A server’s naming service
entry must be available from any node from which the
service is to be invoked (or service
will be denied).

− It must be timely. The presence of "stale" information in
the naming service may cause
some problems. When a password changes, the old password may
remain valid (and the new
password invalid) to the extent the naming service provides
stale information. When a user
or server is added to the network, it will not be able to
participate in authentication until the
information added to the naming service is available at the
node doing the authentication. In
the unusual circumstance that a key changes, the entity
whose key has changed will not be
able to use the new key until the new certificate is uniformly available.

− It must be secure with regard to certain specific
properties. In general, the security of DASS
protected applications does not depend on the security of
the naming service. It is expected
that the availability needs of the naming service will
prevent it from being as secure as some
applications need to be. There are two aspects of DASS
security which do depend on the

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 24

security of the naming service: timely revocation of
certificates and protection of user secrets
against dictionary based password guessing. DASS depends on
the removal of certificates
from the naming service in order to revoke them more quickly
than waiting for them to time
out. For this mechanism to provide any actual security, it
must not be possible for a network
entity to "impersonate" the naming service and the naming
service must be able to enforce
access controls which prevent a revoked certificate from
being reinstated by an unauthorized
entity. In the long run, it is expected that DASS itself
will be used to secure the naming
service, which presents certain potential recursion problems
(to be addressed in the naming
service design). If the naming service is not
authenticated (as is expected in early versions)
attacks where a revoked certificate is "reinstated" through
impersonation of the naming serv­
ice are possible.

The specific functions DASS requests of the naming service are simple:

− Given an X.500 name, store a set of certificates associated with that name.

− Given an X.500 name, retrieve the set of certificates associated with that name.

− Given an X.500 name, store a set of encrypted credentials associated
with that name.

− Given and X.500 name, retrieve a set of encrypted credentials
associated with that name.

Implementation over a particular naming service may
implement more specialized functions for
reasons of efficiency. For example, the certificates
associated with a name may be separated into
several sets (child, parent, cross, self) so that only the
relevant ones may be retrieved. In order
that access to the naming service itself be secure, the
protocols should be authenticated. Certifi­
cates should generally be readable without authentication
in order to avoid recursion problems.
Requests to read encrypted credentials should be specialized
and should include proof of knowl­
edge of the password in order that the naming service can
audit and slow down false password
guesses.

The following sections describe the interfaces to specific naming services:

2.3.1 Interface to X.500

Certificates associated with a particular name are stored as
attributes of the entry as specified in
X.509. X.509 defines attributes appropriate for parent and
cross certificates (CrossCertificate­
Pair, CACertificate) for some principals; we will have to
define a DASSUserPrincipal object
class including these attributes in order to properly use
them with ordinary users. Retrieval is via
normal X.500 protocols. Certificates should be world
readable and modifiable only by appropri­
ate authorities.

Encrypted credentials are stored with the entry of the
principal under a yet to be defined attribute.
The credentials should be encoded as specified in section 4.
 In the absence of extensions to the
X.500 protocol to control password guessing, the encrypted
credentials should be world readable
and updatable only by the named principal and other appropriate authorities.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 25

2.3.2 Interface to CDC

The CDC (Certificate Distribution Center) is a special
purpose name server created to service
DASS until an X.500 service is available in all of the
environments where DASS needs to oper­
ate. The CDC uses a special purpose protocol to communicate
with DASS clients. The protocol
was designed for efficiency, simplicity, and security.
CDCs use DASS as an authentication
mechanism and to protect encrypted credentials from unaudited password guessing.

Each DASS client maintains a list of CDCs and the portion
of the namespace served by that
CDC. Each directory has a master replica which is the only
one which will accept updates. The
CDCs maintain consistency with one another using protocols
beyond the scope of this document.
When a DASS client wishes to make a request of a CDC, it
opens a TCP or DECnet connection
to the CDC and sends an ASN.1 (BER) encoded request and
receives a corresponding ASN.1
(BER) encoded response. Clients are expected to learn the
IP or DECnet address and port num­
ber of the CDC supporting a particular name from a local
configuration file. To maximize per­
formance, the requests bundle what would be several
requests if made in terms of requests for
individual certificates. It is intended that all
certificates needed for an authentication operation be
retrievable with at most two CDC requests/responses (one to
the CDC of the client and one to the
CDC of the server).

Documented here is the protocol a DASS client would use to
retrieve certificates and credentials
from a CDC and update a user password. This protocol does
not provide for updates to the cer­
tificate and credential databases. Such updates must be
supported for a practical system, but
could be done either by extensions to this protocol or by
local security mechanisms implemented
on nodes supporting the CDC. Similarly, availability can
be enhanced by replicating the CDC.
Automating the replication of updates could be implemented
by extensions to this protocol or by
some other mechanism. This specification assumes that
updates and replication are local matters
solved by individual CA/CDC implementations.

Requests and responses are encoded as follows:

2.3.2.1 ReadPrinCertRequest

This request asks the CDC to return the child certificates
and selected incoming cross certificates
for the specified object. The format of the request is:

ReadPrinCertRequest ::= [4] IMPLICIT SEQUENCE {
flags [0] BIT STRING DEFAULT {},
index [1] IMPLICIT INTEGER DEFAULT 0,
resolveFrom [2] Name OPTIONAL,
principal Name,
crossCertIssuers ListOfIssuers OPTIONAL
}

ListOfIssuers ::= SEQUENCE OF Name

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 26

The first 24 bits of flags, if present, contain a protocol version number. Clients
following this
spec should place the value 2.0.0 in the three bytes.
Servers following this spec should accept
any value of the form 1.x.x or 2.x.x. flags bits beyond the first 24 are reserved for future use
(should not be supplied by clients and should be ignored by servers).

index is only used if the response exceeds the size of a single
message; in that case, the query is
repeated with index set to the value that was returned by ReadPrinCertResponse.

resolveFrom and principal imply a set of entities for which certificates should be retrieved. re­
solveFrom (if present) must be an ancestor of principal and child certificates will be retrieved
for principal and all names which are ancestors of principal but descendants of resolveFrom.
The encoding of names is per X.500 and is specified in more
detail in section 4. The CDC re­
turns the certificates in order of the object they came from, parents
before children.

crossCertIssuers is a list of cross certifiers that would be believed in the
context of this authenti­
cation. If supplied, the CDC may return a chain of
certificates starting with one of the named
crossCertIssuers and ending with the named principal. One of resolveFrom or crossCertIssu­
ers must be present in any request; if both are present, the CDC may
return either chain.

2.3.2.2 ReadPrinCertResponse

This is the response a CDC sends to a ReadPrinCertRequest. Its syntax is:

ReadPrinCertResponse ::= [5] IMPLICIT SEQUENCE {
status [0] IMPLICIT CDCstatus DEFAULT success,
index [1] INTEGER OPTIONAL,
resolveTo [2] Name OPTIONAL,
certSequence [3] IMPLICIT CertSequence,
indexInvalidator [4] OCTET STRING (SIZE(8))

OPTIONAL,
flags [5] BIT STRING OPTIONAL
}

CertSequence ::= SEQUENCE OF Certificate

status indicates success or the cause of the failure.

index if present indicates that the request could not be fully
satisfied in a single request because
of size limitations. The request should be repeated with
this index supplied in the request to get
more.

resolveTo will be present if index is present and should be supplied in the request for more cer­
tificates.

certSequence contains certificates found matching the search criteria.

indexInvalidator may be present and indicates the version of the database
being read. If a set of
certificates is being read in multiple requests (because
there were too many to return in a single

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 27

message), the reader should check that the value for
indexInvalidator is the same on each request.
If it is not, the server may have skipped or duplicated some
certificates. This field must not be
present if the version number in the request was missing or version 1.x.x.

The first 24 bits of flags, if present, indicate the protocol version number.
Implementers of this
version of the spec should supply 2.0.0 and should accept
any version number of the form 1.x.x
or 2.x.x.

2.3.2.3 ReadOutgoingCertRequest

This requests from the CDC a list of all parent and outgoing
cross certificates for a specified ob­
ject. A CDC is capable of storing cross certificates
either with the subject or the issuer of the
cross certificate. In response to this request, the CDC
will return all parent and cross certificates
stored with the issuer for the named principal and all of its
ancestors. Its syntax is:

ReadOutgoingCertRequest ::= [6] IMPLICIT SEQUENCE {
flags [0] BIT STRING DEFAULT {},
index [1] IMPLICIT INTEGER DEFAULT 0,
principal Name
}

The first 24 bits of flags is a protocol version number and should contain 2.0.0 for
clients imple­
menting this version of the spec. Servers implementing this
version of the spec should accept any
version number of the form 1.x.x or 2.x.x. The remaining
bits are reserved for future use (they
should not be supplied by clients and they should be ignored by servers).

index is used for continuation (see ReadPrinCertRequest).

principal is the name for which certificates are requested.

2.3.2.4 ReadOutgoingCertResponse

This is the response to a ReadOutgoingCertRequest. Its syntax is:

ReadOutgoingCertResponse::= [7] IMPLICIT SEQUENCE {
status [0] IMPLICIT CDCStatus DEFAULT success,
index [1] INTEGER OPTIONAL,
certSequence [2] IMPLICIT CertSequence,
indexInvalidator [3] OCTET STRING (SIZE(8))

OPTIONAL,
flags [4] BIT STRING OPTIONAL
}

CertSequence ::= SEQUENCE OF Certificate

status indicates success of the cause of failure of the operation.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 28

index is used for continuation; see ReadPrinCertRequest.

certSequence is the list of parent and outgoing cross certificates.

indexInvalidator is used for continuation; see ReadPrinCertResponse (the
same rules apply with
respect to version numbers).

The first 24 bits of flags, if present, contain the protocol version number. Clients implementing
this version of the spec should supply the value 2.0.0.
Servers should accept any values of the
form 1.x.x or 2.x.x. The remaining bits are reserved for
future use (they should not be supplied
by clients and should be ignored by servers).

2.3.2.5 ReadCredentialRequest

This request is made to retrieve an principal’s encrypted
credentials. To prevent unaudited pass­
word guessing, this structure includes an encrypted value
that proves that the requester knows the
password that will decrypt the structure. The syntax of the request is:

ReadCredentialRequest ::= [2] IMPLICIT SEQUENCE {
flags [0] BIT STRING DEFAULT {}
principal Name,
logindata [2] BIT STRING DEFAULT {},
token [3] BIT STRING OPTIONAL
}

The first 24 bits of flags contains the version number of the protocol. The value
2.0.0 should be
supplied. Any value of the form 1.x.x or 2.x.x should be
accepted. Any additional bits are re­
served for future use (should not be supplied by clients and should
be ignored by servers).

principal is the name of the principal for whom encrypted credentials are desired.

logindata is an encrypted value. It may only be present if the
version number is 2.0.0 or higher.
It must be present to read credentials which are protected
by the login agent functionality of the
CDC. It is constructed as a single RSA block encrypted
under the public key of the CDC. The
public key of the CDC is learned by some local means.
Possibilities include a local configuration
file or by using DASS to read and verify a chain of
certificates ending with the CDC [the CDC
serving a directory should have its public key listed under
a name consisting of the directory
name with the RDN "CSS=X509"; the OID for the type CSS is
1.3.24.9.1]. The contents of the
block are as follows:

− The low order eight bytes contain a randomly generated DES
key with the last byte of the
DES key placed in the last byte of the RSA block. This DES
key will be used by the CDC to
encrypt the response. Key parity bits are ignored.

− The next to last eight bytes contain a long Posix time with
the integer time encoded as a byte
string using big endian order.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 29

− The next eight bytes (from the end) contain a hash of the
password. The algorithm for com­
puting this hash is listed in section 4.4.2. The CDC never
computes this hash; it simply com­
pares the value it receives with the value associated with the credentials.

− The next sixteen bytes (from the end) contain zero.

− The remainder of the RSA block (which should be the same
size as the public modulus of the
CDC) contains a random number. The first byte should be
chosen to be non­zero but so the
value in the block does not exceed the RSA modulus. Servers
should ignore these bits. This
random number need not be of cryptographic strength, but
should not be the same value for
all encryptions. Repeating the DES key would be adequate.

− The byte string thus constructed is encrypted using the RSA
algorithm by treating the string
of bytes as a "big endian" integer and treating the integer
result as "big endian" to make a
string of bytes.

token will not be present in the initial implementation but a
space is reserved in case some future
implementation wants to authenticate and audit the node from which a
user is logging in.

2.3.2.6 ReadCredentialProtectedResponse

This is the second possible response to a
ReadPrinLoginRequest. It is returned when the en­
crypted credentials are protected from password guessing by
the CDC acting as a login agent. Its
syntax is:

ReadCredentialProtectedResponse ::=
[16] IMPLICIT SEQUENCE {

status [0] IMPLICIT CDCStatus DEFAULT success,
encryptedCredential [1] BIT STRING,
flags [2] BIT STRING OPTIONAL
}

status indicates that the request succeeded or the cause of the failure.

encryptedCredential contains the DASSPrivateKey structure (defined in section
4.1) encrypted
under a DES key computed from the user’s name and password
as specified in section 4.4.2 and
then reencrypted under the DES key provided in the ReadPrinLoginRequest.

The first 24 bits of flags, if present, contains the version number of the protocol.
Implementers
of this version of the spec should supply 2.0.0 and should
accept any version number of the form
2.x.x. Other bits are reserved for future use (they should
not be supplied and they should be ig­
nored).

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 30

2.3.2.7 WriteCredentialRequest

This is a request to update the encrypted credential
structure. It is used when a user’s key or
password changes. The syntax of the request is:

WriteCredentialRequest ::= [17] IMPLICIT SEQUENCE {
flags [0] BIT STRING DEFAULT {},
authtoken [2] BIT STRING OPTIONAL,
principal [3] Name,
logindata [4] BIT STRING DEFAULT {},
furtherSensitiveStuff [5] BIT STRING
}

The first 24 bits of flags is a version number. Clients implementing this version of the spec
should supply 2.0.0. Servers should accept any value of the
form 2.x.x. Additional bits are re­
served for future use (clients should not supply them and servers
should ignore them).

token, if present, authenticates the entity making the request.
A request will be accepted either
from a principal proving knowledge of the password (see logindata below) or a principal pre­
senting a token in this field and satisfying the
authorization policy of the CDC. This field need
not be present if logindata includes the hash2 of the
password (anyone knowing the old password
may set a new one).

principal is the name of the object for which encrypted credentials should be updated.

logindata is encrypted as in ReadPrinLoginRequest. It proves that the
requester knows the old
password of the principal to be updated (unless the token
supplied is from the user’s CA) and
includes the key which encrypts furtherSensitiveStuff.

furtherSensitiveStuff is an encrypted field constructed as follows:

− The first eight bytes consist of the hash2 defined in
section 4.4.2 with the last byte of the
hash2 value stored first. The CDC stores this value and
compares it with the values supplied
in future requests of ReadCredentialRequest and WriteCredentialRequest.

− The next (variable number of) bytes contains a
DASSPrivateKey structure (defined in sec­
tion 4.1). This is the new credential structure that will
be returned by the CDC on future
ReadCredentialRequests.

− The result is padded with zero bytes to a multiple of eight bytes.

− The entire padded string is encrypted using the key from logindata or token using DES in
CBC mode with zero IV.

the new eight byte "hash2" defined in section 4.4.2
concatenated with the DASSPrivateKey struc­
ture encrypted under the new "hash1" all encrypted under the DES key
included in logindata.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 31

2.3.2.8 HereIsStatus

This is the response message to ill­formed requests and
requests that only return a status and no
data. It’s syntax is:

HereIsStatus ::= [1] IMPLICIT SEQUENCE {
status [0] IMPLICIT CDCStatus DEFAULT success
}

status indicates success or the cause of the failure.

2.3.2.9 Status Codes

The following are the CDCStatus codes that can be returned
by servers. Not all of these values
are possible with all calls, and some of the status codes
are not possible with any of the calls de­
scribed in this document.

CDCStatus ::= INTEGER {

success(0),

accessDenied(1),

wrongCDC(2), ­­this CDC does not store the

­­requested information

unrecognizedCA(3),

unrecognizedPrincipal(4),

decodeRequestError(5),­­invalid BER

illegalRequest(6), ­­request not recognised

objectDoesNotExist(7),

illegalAttribute(8),

notPrimaryCDC(9),­­write requests not accepted

­­at this CDC replica

authenticationFailure(11),

incorrectPassword(12),

objectAlreadyExists(13),

objectWouldBeOrphan(15),

objectIsPermanent(16),

objectIsTentative(17),

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 32

parentIsTentative(18),

certificateNotFound(19),

attributeNotFound(20),

ioErrorOnCertifDatabase(100),

databaseFull(101),

serverInternalError(102),

serverFatalError(103),

insufficientResources(104)

}

3 Services Provided

This section specifies the services provided by DASS in
terms of abstract interfaces and a model
implementation. A particular implementation may support
only a subset of these services and
may provide them through interfaces which combine functions
and supply some parameters im­
plicitly. The specific calling interfaces are in some cases
language and operating system specific.
An actual implementation may choose, for example, to
structure interfaces so that security con­
texts are established and then passed implicitly in calls
rather than explicitly including them in
every call. It might also bundle keys into opaque
structures to be used with supplied encryption
and decryption routines in order to enhance security and
modularity and better comply with ex­
port regulations. Annex B describes a Portable API designed
so that applications using a limited
subset of the capabilities of DASS can be easily ported
between operating systems and between
DASS and Kerberos based environments. The model
implementation describes data structures
which include cached values to enhance performance.
Implementations may choose different
contents or different caching strategies so long as the same
sequence of calls would produce the
same output for some caching policy.

DASS operates on four kinds of data structures:
Certificates, Credentials, Tokens, and Certifica­
tion Authority State. Certificates and Tokens are passed
between implementations and thus their
exact format must be architecturally specified. This
detailed bit­for­bit specification is in section
4. Credentials generally exist only within a single node and
their format is therefore not specified
here. The contents of all of these data structures is
listed below followed by the algorithms for
manipulating them.

There are three kinds of services provided by DASS:
Certificate Maintenance, Credential Mainte­
nance, and Authentication. The first two kinds exist only in
support of the third. Certificate main­
tenance functions maintain the database of public keys in
the naming service. These functions
tend to be fairly specialized and may not be supported on
all platforms. Before authentication can
take place, both authenticating principals must have
constructed credentials structures. These are
built using the Credential Maintenance calls. The
Authentication functions use credential infor­

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 33

mation and certificates, produce and consume authentication
tokens and tell the two communicat­
ing parties one another’s names.

3.1 Certificate Contents

For purposes of this architecture, a certificate is a data
structure posted in the naming service
which proclaims that knowledge of the private key associated
with a stated public key authenti­
cates a named principal. Certificates are "signed" by some
authority, are readable by anyone, and
can be verified by anyone knowing the public key of the authority.

DASS organizes the CA trust hierarchy around the naming
hierarchy. There exists a trusted
authority associated with each directory in the naming
hierarchy. Generally, each authority cre­
ates certificates stating the public keys of each of its
children (in the naming hierarchy) and the
public key of its parent (in the naming hierarchy). In
this way, anyone knowing the public key of
any authority can learn the public key of any other by
"walking the tree". In order that principals
may authenticate even when all of their ancestor directories
do not participate in DASS, authori­
ties may also create "cross­certificates" which certify
the public key of a named entity which is
not a descendent. Rules for finding and following these
cross­certificates are described in the
Get_Pub_Keys routines. Every principal is expected to know
the public key of the CA of the
directory in which it is named. This must be securely
learned when the principal is initialized and
may be maintained in some form of local storage or by having
the principal sign a certificate list­
ing the name and public key of its parent and posting that certificate
in the naming service.

The syntax and content of DASS certificates are defined in
terms of X.509 (Directory ­ Authenti­
cation Framework). While that standard prescribes a single
syntax for certificates, DASS consid­
ers certificates to be of one of six types:

− Normal Principal certificates are signed by a CA and
certify the name and public key of a
principal where the name of the CA is a prefix of the name
of the principal and is one com­
ponent shorter.

− Trusted Authority certificates are signed by an ordinary
principal and certify the name and
public key of the principal’s CA (i.e. the CA whose name is
a prefix of the principal’s name
and is one component shorter).

− Child certificates are signed by a CA and certify the name
and public key of a CA of a de­
scendent directory (i.e. where the name of the issuing CA
is a prefix of the name of the sub­
ject CA and is one component shorter).

− Parent certificates are signed by a CA and certify the name
and public key of the CA of its
parent directory (i.e. whose name is a prefix of the name
of the issuer and is one component
shorter).

− Cross certificates are signed by a CA and certify the name
and public key of a CA of a direc­
tory where neither name is a prefix of the other.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 34

− Self certificates are signed by a principal or a CA and the
issuer and subject name are the
same. They are not used in this version of the architecture
but are defined as a convenient
data structure in which in which implementations may
insecurely pass public keys and they
may be used in the future in certain key roll­over procedures.

It is intended that some future version of the architecture
relax the restrictions above where pre­
fixes must be one component shorter. Being able to handle
certificates where prefixes are two or
more components shorter complicates the logic of treewalking
somewhat and is not immediately
necessary, so such certificates are disallowed for now.

The syntax of certificates is defined in section 4. For purposes of the algorithms which follow,
the following is the portion of the content which is used
(names in brackets refer to the field
names in the ASN.1 encoded structure):

− UID of the issuer (optional)

− Full name of the issuer (the authority or principal signing) [issuer]

− UID of the subject (optional)

− Full name of the subject (the authority or principal whose key is
being certified) [subject]

− Public Key of the subject [subjectPublicKey]

− Period of validity (effective date and expiration date) [valid]

− Signature over the entire content of the certificate created using the
private key of the issuer.

When parsing a certificate, the reader compares the two
name fields to determine what type of
certificate it is. For Parent and Trusted Authority
certificates, the names are ignored for purposes
of all further processing. For Child and Normal Principal
certificates, only the suffix by which the
child’s name is longer than the parent’s is used for
further processing. The reason for this is so
that if a branch of the namespace is renamed, all of the
certificates in the moved branch remain
valid for purposes of DASS processing. The only purposes of
having full names in these certifi­
cates are (1) to comply with X.509, (2) for possible
interoperability with other architectures using
different algorithms, and (3) to allow principals to
securely store their own names in trusted
authority certificates in the case where they do not have enough local
storage to keep it.

3.2 Encrypted Private Key Structure

In order that humans need only remember a password rather
than a full set of credentials, and
also to make installation of nodes and servers easier, there
is a defined format for encrypting RSA
secrets under a password and posting in the naming service.
This structure need only exist when
passwords are used to protect RSA secrets; for servers
which keep their secrets in non­volatile
memory or users who carry smart cards, they are unnecessary.

This structure includes the RSA private/public key pair
encrypted under a DES key. The DES
key is computed as a one­way hash of the password. This
structure also optionally includes the

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 35

UID of the principal. It is needed only if a single RSA key
is shared by multiple principals (with
multiple UIDs).

Since this structure is posted in the name service and may
be used by multiple implementations,
its format must be architecturally defined. The exact encoding is
listed in section 4.

3.3 Authentication Tokens

This section of the document defines the contents of the
authentication tokens which are pro­
duced and consumed by Create_token and Accept_token. With
DASS, the token passed from the
client to the server is complex, with a large number of
optional parts, while the token passed from
server to client (in the case of mutual authentication only) is
small and simple.

The authentication token potentially contains a large number
of parts, most of which are optional
depending on the type of authentication. The following
defines the content and purpose of each
of the parts, but does not describe the actual encoding
(in the belief that such details would be
distracting). The encoding is in section 4.

The authentication process begins when the initiator calls
Create_token with the name of the tar­
get. This routine returns an authentication token, which is
sent to the target. The target calls Ac­
cept_token passing it the token. Both routines produce a
second "mutual authentication token".
The target returns this to the initiator to prove that it received the token.

3.3.1 Initial Authentication Token

The components of the initial authentication token are
(names in brackets refer to the field names
within the ASN.1 encoded structures defined in section 4):

a) Encrypted Shared Key ­ [authenticatingKey] ­ This is a
Shared (DES) key encrypted under
the public key of the target. Also included in the encrypted
structure is a validity interval and
a recognizable pattern so that the receiver can tell whether the
decryption was successful.

b) Login Ticket ­ [sourcePrincipal.userTicket] ­ This is
a "delegation certificate" signed by a
principal’s long term private key delegating to a short
term public key. Its "active ingredi­
ents" are:

1) UID of delegating principal [subjectUID]

2) Period of validity [validity]

3) Delegation public key [delegatingPublicKey]

4) Signature by private key of principal
The existence of this signature is testimony that the
private key corresponding to the dele­
gation public key speaks for the user during the validity interval.

This data structure is optional and will be missing if the
authentication is only on behalf

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 36

of a Local Username on a node (i.e. proxy) rather than on
behalf of a real principal with a
real key.

c) Shared Key Ticket ­
[sourcePrincipal.sharedKeyTicketSignature] ­ This is a signature of the
Encrypted Shared Key by the Delegation Public key in the
Login Ticket. The existence of
this signature is testimony that the DES key in the encrypted shared
key speaks for the user.

This data structure is optional and will be missing if the
authentication is only on behalf of a
Local Username on a node (i.e. proxy) rather than on
behalf of a real principal with a real
key. It will also be missing if delegation is taking place.

d) Node Ticket ­ [sourceNode.nodeTicketSignature] ­ This
is a signature of the Encrypted
Shared key and a "Local Username" on the host node by the
node’s private key. The exis­
tence of this signature is testimony by the node that the
DES key in the encrypted shared key
speaks for the named account on that node.

e) Delegator ­ [sourcePrincipal.delegator] ­ This data
structure contains the private login key
encrypted under the Shared key. It is optional and is
present only if the initiator is delegating
to the destination.

f) Authenticator ­ [authenticatorData] ­ This data
structure contains a timestamp and a message
digest of the channel bindings signed by the Shared Key. It is always present.

g) Principal name ­ [sourcePrincipal.userName] ­ This is
the name of the initiating principal. It
is optional and will be missing for strong proxy where bits
on the wire are at a premium and
where the destination is capable of independently constructing the name.

h) Node name ­ [sourceNode.nodeName] ­ This is the name
of the initiating node. It is optional
and will be missing for strong proxy where bits on the wire
are at a premium and the name is
present elsewhere in the message being passed.

i) Local Username ­ [sourceNode.username] ­ This is the
local user name on the initiating
node. It is optional and will be missing for strong proxy
where bits on the wire are at a pre­
mium and where the name is present elsewhere in the message being passed.

3.3.2 Mutual Authentication Token

The authentication buffer sent from the target to the
initiator (in the case of mutual authentica­
tion) is much simpler. It contains only the timestamp taken
from the authenticator encrypted un­
der the Shared Key. It is ASN.1 encoded to allow for future extensions.

3.4 Credentials

 DASS organizes its internal state with Credentials
structures. There are many kinds of informa­
tion which can be stored in credentials. Rather than making
a different kind of data structure for
each kind of data, DASS provides a single credentials
structure where most of its fields are op­
tional.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 37

Operating systems must provide some mechanism for having
several processes share credentials.
An example of a mechanism for doing this would be for
credentials to be stored in a file and the
name of the file is used as a "handle" by all processes
which use those credentials. Some of the
calls which follow cause credentials structures to be
updated. It is important to the performance
of a system that updates to credentials (such as occur
during the routines Verify_Principal_Name
and Verify_Node_Name, where the caches are updated) be
visible to all processes sharing those
credentials.

In many of the calls which follow, the credentials passed
may be labeled: claimant credentials,
verifier credentials or some such. This indicates whose
credentials are being passed rather than a
type of credentials. DASS supports only one type of
credentials, though the fields present in the
credentials of one sort of principal may be quite different
from those present in the credentials of
another.

An implementation may choose to support multiple kinds of
credentials structures each of which
will support only a subset of the functions available if it
is not implementing the full architecture.
This would be the case, for example, if an implementation did
not support the case where a server
both received requests from other principals and made
requests on its own behalf using a single
set of credentials.

The following are a list of the fields that may be
contained in a credentials structure. They are
grouped according to common usage.

3.4.1 Claimant information

This is the information used when the holder of these
credentials is requesting something. It in­
cludes:

a) Full X.500 name of the principal

b) Public Key of the principal

c) Login Ticket ­ a login ticket contains:

1) the UID of the principal

2) a period of validity (effective date & expiration date)

3) a delegation public key

4) a signature of the ticket contents by the principal’s long term key

d) Delegation Private Key (corresponding to the public key in c3)

e) Encrypted Shared Key (present only when credentials were
created by accept_token; this in­
formation is needed to verify a node ticket after credentials are accepted)

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 38

3.4.2 Verifier information

This is the information needed by a server to decrypt
incoming requests. It is also used by gener­
ate_server_ticket to generate a login ticket.

a) RSA private key.

3.4.3 Trusted Authority

This is information used to seed the walk of the CA
hierarchy to reliably find the public key(s)
associated with a name. Normally, the trusted authority in
a set of credentials will be the direc­
tory parent of the principal named in Claimant information.
 In some circumstances, it may in­
stead be the directory parent of the node on which the credentials reside.

a) Full X.500 name of a CA

b) Corresponding RSA Public Key

c) Corresponding UID

3.4.4 Remote node authentication

This information is present only for credentials generated
by "Accept_token". It includes infor­
mation about any remote node which vouched for the request.

a) Full X.500 name of the node

b) Local Username on the node

c) Node ticket.

3.4.5 Local node credentials

This information is added by Combine_credentials, and is
used by Create_token to add a node
signature to outbound requests.

a) Full X.500 name of the node

b) Local Username on the node

c) RSA private key of the node

3.4.6 Cached outgoing contexts

There may be one (or more) such structures for each server
for which this principal has created
authentication tokens. These represent a cache: they may be
discarded at any time with no effect
except on performance. For each association, the following information is kept:

a) Destination RSA Public Key (index)

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 39

b) Encrypted Shared key

c) Shared Key Ticket (optional, included if there has been a
non­delegating connection)

d) Node Ticket

e) Delegator (optional, included if there has been a delegating connection)

f) Validity interval

g) Shared Key

3.4.7 Cached Incoming Contexts

There may be one such structure for each client from which
this server has received an authenti­
cation token.1 These represent a cache: they may be discarded at any time
with no effect except
on performance. For each association, the following information is kept:

a) Encrypted Shared key (index)

b) Shared Key

c) Validity Interval

d) Full X.500 name of Client Principal

e) UID of Client Principal

f) Public Key of Client Principal

g) Name of Client Node

h) UID of Client Node

i) Public Key of Client Node

j) Local Username on Client node

k) Delegation Public key of Client Principal’s Login Ticket

The Name, UID and Public key of the Principal are all entered
together once the Login Ticket has
been verified. Similarly the Node name, Node key and
Username are entered together once the
Node Ticket has been verified. These pieces of information
are only present if they have been
verified.

1An implementation may choose to keep one System­wide
Cache (and list of incoming timestamps). While it is
unlikely that the same Encrypted Shared Key will result from
encryption of Shared keys generated by different
clients or for different servers, an implementation must
ensure that an entry made for one client/server can not be
reused by another client/server. Similarly an implementation
may choose to keep separate caches for the Shared
Key/Validity Interval/Delegation Public Key, the
Nodename/UID/key/username and the Principal name/UID/key.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 40

3.4.8 Received Authenticators

A record of all the authenticators received is kept. This is
used to detect replayed messages2. The
entries in this list may be deleted when the timestamp is
old enough that they would no longer be
accepted. This list is kept separate from the Cached
incoming context in order that the informa­
tion in the cached incoming context can be discarded at any
time. An implementation could
choose to save these timestamps with the cached incoming
context if it ensures that it can never
purge entries from the cache before the timestamp has aged
sufficiently. This list is accessed
based on an extract from the signature from the
Authenticator. The extract must be at least 64
bits, to ensure that it is very unlikely that 2
authenticators will be received with matching signa­
tures.

a) Extract from Signature from Authenticator

b) Timestamp

If an implementation runs out of space to store additional
authenticators, it may either reject the
token which would have overflowed the table or it may
temporarily narrow the allowed clock
skew to allow it to free some of the space used to hold
"old" authenticators. The first strategy
will always falsely reject tokens; the second may cause
false rejection of tokens if the allowed
clock skew gets narrowed beyond the actual clock skew in the network.

3.5 CA State

The CA needs to maintain some internal state in order to
generate certificates. This internal state
must be protected at all times, and great care must be taken
to prevent its being disclosed. A CA
may choose to maintain additional state information in order
to enhance security. In particular, it
is the responsibility of the CA to assure that the same UID
is not serially reused by two holders of
a single name. In most cases, this can be done by creating
the UID at the time the user is regis­
tered. To securely permit users to keep their UIDs when
transferring from another CA, the CA
must keep a record of any UIDs used by previous holders of
the name. Since actions of a CA are
so security sensitive, the CA should also maintain an audit
trail of all certificates signed so that a
history can be reconstructed in the event of a compromise.
Finally, for the convenience of the
CA operator, the CA should record a list of the directories
for which it is responsible and their
UIDs so that these need not be entered whenever the CA is to
be used. The state includes at least
the following information:

− Public Key of CA

− Private Key of CA

− Serial number of next certificate to be issued

3.6 Data types used in the routines

There are several abstract data types used as parameters to
the routines described in this section.
These are listed here

2This list must be common to all targets that could accept
the same authenticator (channel bindings will prevent
other targets from accepting the same authenticator). This includes
different ‘servers’ sharing the same key.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 41

a) Integer

b) Name
Names unless otherwise noted are always X.500 names. While
most of the design of DASS
is naming service independent, the syntax of certificates
and tokens only permits X.500
names to be used. If DASS is to be used in an environment
where some other form of name
is used, those names must be translated into something
syntactically compliant with X.500
using some mechanism which is beyond the scope of this
architecture. The only other form
of name appearing in this architecture is a "local user
name", which corresponds to the sim­
ple name of an "account" on a node. As a type, such names
appear in parameter lists as
"Strings".

c) String
A String is a sequence of printable characters.

d) Absolute Time
A UTC time. The precision of these Times is not stated. A
precision of the order of one sec­
ond in all times is sufficient.

e) Time Interval
A Time interval is composed of 2 times. A Start Time and an
End Time, both of which are
Absolute Times

f) Timestamp
A Timestamp is a time in POSIX format. I.e. two 32 bit
Integers. The first representing sec­
onds, and the second representing nanoseconds.

g) Duration
A Duration is the length of a time interval.

h) Octet String
A sequence of bytes containing binary data

i) Boolean
A value of either True or False

j) UID
A UID is an bit string of 128 bits.

k) OID
An OID is an ISO Object Identifier.

l) Shared key
A Shared key is a DES key, a sequence of 8 bytes

m)CA State
A structure of the form described in §3.5

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 42

n) Credentials
A structure of the form described in §3.4

o) Certificate
An ASN.1 encoding of the structure described in §3.1

p) Authentication Token
An ASN.1 encoding of the structure described in §3.3.1

q) Mutual Authentication Token
An ASN.1 encoding of the structure described in §3.3.2

r) Encrypted Credentials
An ASN.1 encoding of the structure described in §3.2

s) Public key
A representation of an RSA Public key, including all the
information needed to encode the
public key in a certificate.

t) Set of Public key/UID pairs
A set of Public key/UID pairs. This Data type is only used
internally in DASS ­ it does not
appear in any interface used to other architectures.

3.7 Error conditions

These routines can return the following error conditions
(an implementation may indicate errors
with more or less precision):

a) Incomplete chain of trustworthy CAs

b) Target has no keys which can be trusted.

c) Invalid Authentication Token

d) Login Ticket Expired

e) Invalid Password

f) Invalid Credentials

g) Invalid Authenticator

h) Duplicate Authenticator

3.8 Certificate Maintenance Functions

Authentication services depend on a set of data structures
maintained in the naming service.
There are two kinds of information: Certificates, which
associate names and public keys and are
signed by off­line Certification Authorities; and
Encrypted Credentials, which contain RSA Pri­

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 43

vate Keys and certain context information encrypted under
passwords. Encrypted Credentials are
only necessary in environments where passwords are used.
Credentials may alternatively be
stored in some other secure manner (for example on a smart card).

The certificate maintenance services are designed so that the
most sensitive ­ the actual signing of
certificates ­ may be done by an off­line authority.
Once signed, certificates must be posted in
the naming service to be believed. The precise mechanisms
for moving certificates between off­
line CAs and the on­line naming service are
implementation dependent. For the off­line mecha­
nisms to provide any actual security, the CAs must be told
what to sign in some reliable manner.
The mechanisms for doing this are implementation dependent.
 The abstract interface says that
the CA is given all of the information that goes into a
certificate and it produces the signed cer­
tificate.

There are requirements surrounding the auditing of a CA’s
actions. The details of what actions
are audited, where the audit trail is maintained, and what
utilities exist to search that audit trail
are not specified here. The functions a CA must provide are:

3.8.1 Install CA

Install_CA(
 ­­inputs

keysize Integer,
 ­­outputs

CA_state CA State,
CA_Public_Key Public Key)

This routine need only generate a public/private key pair of
the requested size. Keysize is likely
to be in implementation constant rather than a parameter.
The value is likely to be either 512 or
640. Key sizes throughout will have to increase over time
as factoring technology and CPU
speeds improve. Both keys are stored as part of the
CA_state; the public key is returned so that
other CAs may cross­certify this one. The ‘Next Serial number’ in
the CA state is set to 1.

3.8.2 Create Certificate

Create_certificate(
 ­­inputs

Renewal Boolean,
Include_UID Boolean,
Issuer_name Name,
Issuer_UID UID,
Effective_date Absolute Time,
Expiration_date Absolute Time,
Subject_name Name,
Subject_UID UID,
Subject_public_key Public Key,

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 44

 ­­updated
CA_state CA State,

 ­­outputs
Certificate Certificate)

This procedure creates and signs a certificate. Note that
the various contents of the certificate
must be communicated to the CA in some reliable fashion.
The Issuer_name and UID are the
name and UID of the directory on whose behalf the certificate is being signed.

This routine formats and signs a certificate with the
private key in CA_state. It audits the creation
of the certificate and updates the sequence number which is
part of CA_state. The Issuer and
Subject names are X.500 names. If the CA state includes a
history of what UIDs have previously
been used by what names, this call will only succeed in the
collision case if the Renewal boolean
is set true. If the Include_UID boolean is set true, this
routine will generate a 1992 format X.509
certificate; otherwise it will generate a 1988 format X.509 certificate.

3.8.3 Create Principal

Create_principal(
 ­­inputs

Password String,
keysize Integer,
Principal_name Name,
Principal_UID UID,
Parent_Public_key Public Key,
Parent_UID UID,

 ­­outputs
Encrypted_Credentials Encrypted Credentials,
Trusted_authority_certificate Certificate)

This procedure creates a new principal by generating a new
public/private key pair, encrypting
the public and private keys under the password, and signing
a trusted authority certificate for the
parent CA. In an implementation not using passwords (e.g.
smart cards), an alternative mecha­
nism must be used for initially creating principals. If a
principal has protected storage for trusted
authority information, it is not necessary to create a
trusted authority certificate and store it in the
naming service. Some procedure analogous to this one must
be executed, however, in which the
principal learns the public key and UID of its CA and its own name.

This routine creates two output structures with the following steps:

a) Generate a public/private key pair using the indicated
keysize. An implementation will likely
fix the keysize as an implementation constant, most likely
512 or 640 bits, rather than ac­
cepting it as a parameter. Key sizes generally will have
to increase over time as factoring
technology and CPU speeds improve.

b) Form the encrypted credentials by using the public key,
private key, and Principal_UID and
encrypting them using a hash of the password as the key.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 45

c) Generate a trusted authority certificate (which is
identical in format to a "parent" certificate)
getting fields as follows:

1) Certificate version is X.509 1992.

2) Issuer name is the Principal name (which is an X.500 name).

3) Issuer UID is the Principal UID.

4) Validity is for all time.

5) Subject name is constructed from the Principal name by
removing the last simple name
from the hierarchical name.

6) Subject UID is the CA_UID.

7) Subject Public Key is the CA_Public_Key

8) Sequence number is 1.

9) Sign the certificate with the newly generated private key of the principal.

3.8.4 Change Password

Change_password(
 ­­inputs

Encrypted_credentials Encrypted Credentials,
Old_password String,
New_password String,

 ­­outputs
Encrypted_credentials Encrypted Credentials)

If credentials are stored encrypted under a password, it is
possible to change the password if the
old one is known. Note that it is insufficient to just
change a user’s password if the password has
been disclosed. Anyone knowing the old password may have
already learned the user’s private
key. If a password has been disclosed, the secure recovery
procedure is to call create_principal
again followed by create_certificate to certify the new key.

Using DASS, it may not be appropriate for users to
periodically change their passwords as a pre­
caution unless they also change their private keys by the
procedure above. The only likely use of
the change_password procedure is to handle the case where an
administrator has chosen a pass­
word for the user in the course of setting up the account
and the user wishes to change it to some­
thing the user can remember. A future version of the
architecture may smooth key roll­over by
having the change_password command also generate a new key
and sign a "self" certificate in
which the old key certifies the new one. As a separate
step, a CA which notices a self certificate
posted in the naming service could certify the new key
instead of the old one when the user’s
certificate is renewed. While this procedure is not as
rapid or as reliable as having the user di­
rectly interact with the CA, it offers a reasonable
tradeoff between security and convenience
when there is no evidence of password compromise.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 46

This routine simply decrypts the encrypted credentials
structure supplied using the password sup­
plied. It returns a bad status if the format of the
decrypted information is bad (indicating an incor­
rect password). Otherwise, it creates a new encrypted
credentials structure by encrypting the
same data with the new password. It would be highly
desirable for the user interface to this func­
tion to provide the capability to randomly generate
passwords and prohibit easily guessed user
chosen passwords using length, character set, and
dictionary lookup rules, but such capabilities
are beyond the scope of this document.

If encrypted credentials are stored in some local secure
storage, the above function is all that is
necessary (in fact, if the storage is sufficiently secure,
no password is needed; credentials could
be stored unenciphered). If they are stored in a naming
service, this function must be coupled
with one which retrieves the old encrypted credentials from
the naming service and stores the
new. The full protocol is likely to include access control
checks that require the principal to ac­
quire credentials and produce tokens. For best security,
the encrypted credentials should be ac­
cessible only through a login agent. The role of the login
agent is to audit and limit the rate of
password guessing. If passwords are well chosen, there is
no significant threat from password
guessing because searching the space is computationally
infeasible. In the context of a login
agent, change password will be implemented with a
specialized protocol requiring knowledge of
the password and (for best security) a trusted authority
from which the public key of the login
agent can be learned. See section 2.3.2 for the plans for the
non­X.500 credential storage facility.

3.8.5 Change Name

Change_name(
 ­­inputs

Claimant_Credentials Credentials,
New_name Name,
CA_Public_Key Public Key,
CA_UID UID,

 ­­outputs
Trusted_Authority_Certificate Certificate)

DASS permits a principal to have many current aliases, but
only one current name. A principal
can authenticate itself as any of its aliases but verifies
the names of others relative to the name by
which it knows itself. Aliases can be created simply by
using the create_certificate function once
for each alias. To change the name of a principal, however,
requires that the principal securely
learn the public key and UID of its new parent CA. As with
create_principal, if a principal has
secure private storage for its trusted authority
information, it need not create a certificate, but
some analogous procedure must be able to install new naming information.

This routine produces a new Trusted Authority Certificate with
contents as follows:

a) Issuer name is New_name (an X.500 name)

b) Issuer_UID is Principal UID from Credentials.

c) Validity is for all time.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 47

d) Subject name is constructed from the Issuer name by removing
the last simple name from the
hierarchical name, and converting to an X.500 name.

e) Subject UID is CA_UID

f) Subject Public Key is CA_Public_Key

g) Sequence number is 1.

h) The certificate is signed with the private key of the
principal from the credentials. Note that
this call will only succeed if the principal’s private key
is in the credentials, which will only
be true if the credentials were created by calling Create_server_credentials.

3.9 Credential Maintenance Functions

DASS credentials can potentially have information about two
principals. This functionality is in­
cluded to support the case where a user on a node has two
identities that might be recognized for
purposes of managing access controls. First, there is the
user’s network identity; second, there is
an identity as controlling a particular "account" or
"username" on that node. There are two rea­
sons for recognizing this second identity: first, access
controls might be specified such that only a
user is only permitted access to certain resources when
coming through certain trusted nodes (e.g.
files that can’t be accessed from a terminal at home); and
second, before the transition strategy to
global identities is complete, as a way to refer to
USER@NODE in a way analogous to existing
mechanisms but with greater security.

The mapping of global usernames to local user names on a
node is outside the scope of DASS.
This is done via a "proxy database" or some analogous local
mechanism. What DASS provides
are mechanisms for adding node oriented credentials into a
user’s credentials structure, carrying
the dual authentication information in authentication
tokens, and extracting the information from
the credentials structure created by Accept_token.

Some applications of DASS will not make use of the node
authentication related extensions. In
that case, they will never use the Combine_credentials,
Create_credentials, Get_node_info, or
Verify_node_name functions.

The "normal" sequence of events surrounding a user logging into a node
are as follows:

a) When the user logs in, he types either a local user ID
known to the node or a global name
(the details of the user interface are implementation
specific). Through some sort of local
mapping, the node determines both a global name and a local
account name. The user also
enters a password corresponding to the global name.

b) The node calls network_login specifying the user’s global
name and the supplied password.
The result is credentials which can be used to access network
services but which have not yet
been verified to be valid.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 48

c) The node calls verify_principal_name using its own
credentials to verify the authenticity of
the user’s credentials (these node credentials must have
previously been established by a call
to initialize_server during node initialization).

d) If that test succeeds, the node adds its credentials to
those of the user by calling com­
bine_credentials.

The set of facilities for manipulating credentials follow:

3.9.1 Network login

Network_login(
 ­­inputs

Name Name,
password String,
keysize Integer,
expiration Time interval,
TA_credentials Credentials, ­­optional

 ­­outputs
Claimant_credentials Credentials)

This function creates credentials for a principal when the principal
"logs into the network".

Name is the X.500 name of the principal.

Password is a secret which authenticates the principal to the network.

Keysize specifies the size of the temporary "login" or "delegation"
key. In a real implementation,
it is expected to be an implementation constant (most likely 384 or 512 bits).

Expiration sets a lifetime for the credentials created. For a normal
login, this is likely to be an
implementation constant on the order of 8­72 hours. Some
mechanism for overriding it must be
provided to make it possible (for example) to submit a
background job that might run days or
even months after they are submitted.

TA_credentials are used if the encrypted credentials are protected by a
login agent. If they are
missing, the password will be less well protected from guessing attacks.

This routine does not (as one might expect) securely
authenticate the principal to the calling pro­
cedure. Since the password is used to obtain the
principal’s private key, this call will normally
fail if the principal supplies an invalid password. A
penetrator who has compromised the naming
service could plant fake encrypted credentials under any
name and impersonate that name as far
as this call is concerned. A caller that wishes to
authenticate the user in addition to obtaining cre­
dentials to be able to act on the user’s behalf should call
Verify_principal_name (below) with the
created credentials and the credentials of the calling process.

This routine constructs a credentials structure from
information found in the naming service en­
crypted using the supplied password.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 49

a) If the encrypted credentials structure is protected with a
login agent, retrieve the public key
of the login agent:

1) If TA_credentials are available, use them in a call to
Get_Pub_Keys to get the public key
of the login agent (whose name is derived from the name of
the principal by truncating
the last element of the RDN and adding CSS=X509).

2) If TA_credentials are not available, look up the public key
of the login agent in the nam­
ing service.

Login agents limit and audit password guesses, and are
important when passwords may not
be well chosen (as when users are allowed to choose their
own). To fully prevent the pass­
word guessing threat, principals may only log onto nodes
that already have TA_credentials
which can be used to authenticate the login agent. To
support nodes which have no creden­
tials of their own and to allow this procedure to support
node initialization, it is possible to
network login without TA credentials.

A principal who logs into a node that lacks TA credentials
is subject to the following subtle
security threat: A penetrator who impersonates the naming
service could post his own public
key and address as those of the login agent. This
procedure would then in the process of
logging in reveal the the penetrator enough information for
the penetrator to mount an un­
audited password guessing attack against the principal’s credentials.

b) Retrieve the encrypted credentials from the naming service
or login agent. In the case of the
login agent, the password is one­way hashed to produce
proof of knowledge of the password
and the hashed value is supplied to the login agent
encrypted under its public key as part of
the request.

c) Decrypt the encrypted credentials structure using a the
supplied password. Verify that the de­
cryption was successful by verifying that the resulting
structure can be parsed according the
the ASN.1 rules for Encrypted_Credentials and that the two
included primes when multiplied
together produce the included modulus. If the decryption was
unsuccessful then the routine
returns the ‘Invalid password’ error status. The decryption
results in both the Private Key
and the Public Key.

d) Generate a public/private key pair for the Delegation Key,
using the indicated keysize. Key
size is likely to be an implementation constant rather than
a supplied parameter, with likely
values being 384 and 512 bits. Key sizes generally will
have to increase over time as factor­
ing technology and CPU speeds improve. Delegation keys can
be relatively shorter than
long term keys because DASS is designed so that compromise
of the delegation key after it
has expired does not result in a security compromise. An
important advantage of making
key size an implementation constant is that nodes can
generate key pairs in advance, thus
speeding up this procedure. Key generation is the most CPU
intensive RSA procedure and
could make login annoyingly slow.

e) Construct a Login Ticket by signing with the user’s private
key a combination of the public
key, a validity period constructed from the current time and
the expiration passed in the call,
and the principal UID found in the encrypted­key structure.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 50

f) Forget the user’s private key.

g) Retrieve from the naming service any trusted authority
certificates stored with the user’s en­
try. Discard any that are not signed by the user’s public
key and UID. An implementation in
which the login node has credentials of its own may choose
its trusted authority information
instead of retrieving and verifying trusted authority
certificates from the naming service.
This will have a subtle effect on the security of the resulting system.

h) Construct a credentials structure from:

1) Claimant credentials:

(i) Name of the principal from calling parameter

(ii) Login Ticket as constructed in (e)

(iii) Delegation Private key as constructed in (d)

(iv) Public key from the encrypted credentials structure

2) No verifier credentials

3) Trusted Authorities: for the most recently signed trusted authority certificate3:

(i) Name of the CA from the subject field of the certificate

(ii) Public Key of the CA from the subject public key field

(iii) UID of the CA from the subject UID field

4) no remote node credentials

5) no local node credentials

6) no cached outgoing associations

7) no cached incoming associations

3.9.2 Create Credentials

Create_credentials(
 ­­outputs

Claimant_credentials Credentials)

This routine creates an "empty" credentials structure. It
is needed in the case of a user logging
into a node and obtaining node oriented credentials but no
global username credentials. Because
the "combine_credentials" call wants to modify a set of user
credentials rather than create a new
set, this call is needed to produce the "shell" for
combine_credentials to fill in.

It is unlikely that any real implementation would support
this function, but rather would have
some functions which combine network_login,
create_credentials, and combine_credentials in
whatever ways are supported by that node.

3There is normally only one Trusted Authority Certificate. If
there is more than one then an implementation may
choose to maintain a list of all the valid keys. They should all refer
to the same CA (UID and name).

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 51

3.9.3 Combine Credentials

Combine_credentials(
 ­­inputs

node_credentials Credentials,
localusername String,

 ­­updated
user_credentials Credentials)

This routine is provided by implementations which support
the notion of local node credentials.
After the node has verified to its own satisfaction that the
user_credentials are entitled to access
to a particular local account, this call adds node
credential information to the user_credential
structure. This function may be applied to
user_credentials created by network_login, cre­
ate_credentials, or accept_token.

a) Fill in the local node credentials substructure of user_credentials as follows:

1) Full name of the node: from Full name of the Principal in node_credentials

2) Local username on the node: from proxy lookup

3) RSA private key of the node: from verifier credentials in node_credentials

b) Optionally, change the trusted authorities to match the trusted
authorities from the node cre­
dentials. This is an implementation option, done most
likely as a performance optimization.
The only case where this option is required is where no
trusted authorities existed in the user
credentials (because they were created by
create_credentials of accept_token). Server cre­
dentials should generally keep their own trusted authorities.

It is likely that an implementation will choose not to
replicate its node credentials in every cre­
dentials structure that it supports, but rather will
maintain some sort of pointer to a single copy.
This algorithm is stated as it is only for ease of specification.

3.9.4 Initialize_server

initialize_server(
 ­­inputs

Name Name,
password String,
TA_credentials Credentials, ­­optional

 ­­outputs
Server_credentials Credentials)

Somehow a server must get access to its credentials. One way
is for the credentials to be stored in
the naming service like user credentials encrypted under a
service password. The service then
needs to gain at startup time access to a service password.
This may be easier to manage and is
not insecure so long as the service password is well chosen.
Alternately, the service needs some
mechanism to gain access directly to its credentials. The
credentials created by this call are in­
tended to be very long lived. They do not time out, so a
node or server might store them in Non­

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 52

Volatile memory after "initial installation" rather than
calling this routine at each "boot". These
credentials are shared between all servers which use the same key.
This routine works as follows:

a) Retrieve from the naming service or login agent the
encrypted credentials structure corre­
sponding to the supplied name. See Network_login for a
discussion of the use of
TA_credentials and login agents.

b) Decrypt that structure using a one­way hash of the
supplied password. Verify that the de­
cryption was successful. Verify that the public key in the structure
matches the private key.

c) Retrieve from the naming service any trusted authority
certificates stored under the supplied
name. Discard any which do not contain the UID from the
encrypted credentials structure or
are not signed by the key in the encrypted credentials structure.

d) Construct a credentials structure from:

1) Claimant credentials:

(i) Name of the principal from the calling parameter

(ii) UID of the principal from the encrypted­key structure

(iii) No login ticket

(iv) No login secret key

2) Verifier credentials:

(i) Server secret key from the encrypted­key structure

3) Trusted Authorities: from the most recently signed Trusted Authority
Certificate:

(i) Name of CA from the Subject Name field

(ii) UID of the CA from the Subject UID field

(iii) Public Key of the CA from the Subject Public Key field

4) no node credentials

5) no cached outgoing associations

6) no cached incoming associations

3.9.5 Generate Server Ticket

generate_server_ticket(
 ­­inputs

expiration Time interval,
 ­­updated

Server_credentials Credentials)
Server credentials created by initialize_server can be used
to accept incoming authentication to­
kens and can act as node_credentials for outgoing
authentications, but cannot create

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 53

user_credentials of their own. If a server initiates
connections on its own behalf, it must have a
ticket just like any other user might have. That ticket has
limited lifetime and the right to act on
behalf of the server can be delegated. The server cannot,
however, delegate the right to receive
connections intended for it. An implementation must come up
with a policy for the expiration of
server tickets and how long before expiration they are
renewed. A likely policy is for this proce­
dure to be implicitly called by Create_token if there is no
current ticket present in the credentials.
If so, this interface need not be exposed.

This routine is implemented as follows:

a) Generate an RSA public/private key pair.

b) Compute a validity interval from the current time and the expiration supplied.

c) Construct a login ticket from the RSA public key (from a), validity interval (from b), the
UID from the credentials, and signed with the server key in
the credentials. (Discard previ­
ous Login Ticket if there was one).

d) Discard all information in the Cached Outgoing Contexts.

3.9.6 Delete Credentials

delete_credentials(
 ­­updated

credentials Credentials)
Erases the secrets in the credentials structure and deallocates the storage.

3.10 Authentication Procedures

The guts of the authentication process takes place in the
next two calls. When one principal
wishes to authenticate to another, it calls Create_token and
sends the token which results to the
other. The recipient calls Accept_token and creates a new
set of credentials. The other calls in
this section manipulate the received credentials in order
to retrieve its contents and verify the
identity of the token creator.

3.10.1 Create Token

Create_token(
 ­­inputs

target_name Name,
deleg_req_flag Boolean,
mutual_req_flag Boolean,
replay_det_req_flag Boolean,
sequence_req_flag Boolean,
chan_bindings Octet String,
Include_principal_name Boolean,
Include_node_name Boolean,

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 54

Include_username Boolean,
 ­­updated

claimant_credentials Credentials,
 ­­outputs

authentication_token Authentication token,
mutual_authentication_token Mutual Authentication token,
Shared_key Shared Key
instance_identifier Timestamp)

This routine is used by the initiator of a connection to
create an authentication token which will
prove its identity. If the claimant credentials includes
node/account information, the token will
include node authentication.

target_name is the X.500 name of the intended recipient of the token.
Only an entity with access
to the private key associated with that name will be able to
verify the created token and generate
the mutual_authentication_token.

deleg_req_flag indicates whether the caller wishes to delegate to the
recipient of the token. If it is
set, the delegated_credentials returned by Accept_token will
be capable of generating tokens on
behalf of the caller. Node based authentication information
cannot be delegated. The mu­
tual_req_flag, replay_det_req_flag, and sequence_req_flag are put in the authentication token
and passed to the target. This information is included in
the token to make it easier to implement
the GSSAPI over DASS. DASS itself makes no use of this information.

In most applications, the purpose of a token exchange is to
authenticate the principals controlling
the two ends of a communication channel. chan_bindings contains an identifier of the channel
which is being authenticated, and thus its format and
content should be tied to the underlying
communication protocol. DASS only guarantees that the
information has been communicated re­
liably to the named target. If DASS is used with a
cryptographically protected channel (such as
SP4), this data should contain a one­way hash of the
key used to encrypt the channel. If that
channel is multiplexed, the data should also include the ID
of the subchannel. If the channel is
not encrypted, the network must be trusted not to modify
data on a connection. The source and
target network addresses and a connection ID should be
included in the chan_bindings at the
source and checked at the target. A token exchange also
results in the two ends sharing a key and
an instance identifier. If that key and instance
identifier are used to cryptographically protect
subsequent communications, then chan_bindings need not have any cryptographic significance
but may be used to differentiate multiple entities sharing
the public keys of communicating prin­
cipals. For example, if a service is replicated and all
replicas share a public key, chan_bindings
should include something that identifies a single instance
of the service (such as current address)
so that the token cannot be successfully presented to more than one of
the servers.

include_principal_name, include_node_name, and include_username are flags which deter­
mine whether the principal name, node name, and/or username
from the credentials structure are
to be included in the token. This information is made
optional in a token so that applications
which communicate this information out of band can produce
"compressed" tokens. If this infor­
mation is included in the token, it will be used to populate
the corresponding fields in the creden­
tials structure created by Accept_token.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 55

claimant_credentials are the credentials of the calling procedure. The secrets
contained therein
are used to sign the token and the trusted authorities are
used to securely learn the public key of
the target. The cached outgoing contexts portion of the
credentials may be updated as a side ef­
fect of this call.

The major output of this routine is an authentication_token which can be passed to the target in
order to authenticate the caller.

In addition to returning an authentication token, this
routine returns a mu­
tual_authentication_token, a shared_key, and an instance_identifier. The mutual authentication
token is the same as the one generated by the Accept_token
call at the target. If the protocol using
DASS wishes mutual authentication, the target should return
this token to the source. The source
will compare it to the one returned by this routine using
Compare_Mutual_Token (below) and
know that the token was accepted at its proper destination.

The DES key and instance identifier can be used to encrypt
or sign data to be sent to this target.
The key and instance will be given to the target by
Accept_token, and the key will only be known
by the two parties to the authentication. If a single set of
credentials is used to authenticate to the
same target more than once, the same DES key is likely to be
returned each time. If the parties
wish to protect against the possibility of an outside agent
mixing and matching messages from
one authenticated session with those of another, they should
include the instance identifier in the
messages. The instance identifier is a timestamp and it is
guaranteed that the DES key/instance
identifier pair will be unique.

An implementation may wish to "hide" the DES key from
calling applications by placing it in
system storage and providing calls which encrypt/decrypt/sign/verify
using the key.

The primary tasks of this routine are to create its output
parameters. As a side effect, it may also
update claimant_credentials. It’s algorithm is as follows:

a) The login ticket is checked. If it has passed the end of its
lifetime an ‘Login Ticket Expired’
error is returned. If there is a login ticket, but no
corresponding private key then an ‘Invalid
credentials’ error is returned (this is the case if the
credentials were created by an
authentication­without­delegation operation). If
there is no login ticket or an expired one
and if the long term private key is present in the
credentials, an implementation may choose
to automatically call create_server_ticket to renew the ticket.

b) Create new timestamp using the current time.4

c) The public key and UID of target_name are looked up by
calling get_pub_keys, using the
target_name and the Trusted Authority section of the
claimant_credentials structure. If none
is found, an error status is returned. Otherwise, the cached
outbound connections portion of
credentials are searched (indexed by target Public Key) for
a cached Shared key with a valid­
ity interval which has not expired. If a suitable one is
found skip to step g, else create a cache
entry as follows:

4This timestamp must be unique for this Shared Key. The
timestamp is a 64 bit POSIX time, with a resolution of
1 nanosecond An implementation must ensure that timestamps cannot be reused.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 56

d) Destination Public Key is the one found looking up the
target. A Shared Key is generated at
random. A validity interval is chosen according to node
policy but not to exceed the validity
interval of the ticket in the credentials (if any).

e) Create the Encrypted Shared Key, using the public key of the Target,
and place in the cache.

f) If node authentication credentials are available in the
credentials structure, create a "Node
Ticket" signature using the node secret and include it in the cache.

g) If delegation is requested and no delegator is present in
the cache, create one by encrypting
the delegation private key under the Shared key. The
delegation private key is represented as
an ASN.1 data structure containing only one of the primes (p).

h) If delegation is not requested and no Shared Key Ticket is in
the cache, create one by signing
the requisite information with the delegation private key.

i) Create the Authenticator. The contents of the Authenticator
(including the channel bindings)
are encoded into ASN.1, and the signature is computed. The
Authenticator is then re­
encoded, without including the Channel Bindings but using the same signature.

j) Create output_token as follows:

1) Encrypted Shared Key from cache

2) Login Ticket from Claimant Credentials (if present)

3) Shared Key Ticket from cache (if no delegation and if present)

4) Node Ticket from cache (if present)

5) Delegator from cache (if delegation and if present)

6) Authenticator

7) Principal name from credentials (if present and parameter requests this)

8) Node name from credentials (if present and parameter request this)

9) Local Username from credentials (if present and parameter requests this)

k) Compute Mutual_authentication_token by encrypting the
timestamp from the authenticator
using the Shared key.

l) The instance_identifier is the timestamp. This and the
Shared key are returned for use by the
caller for further encryption operations (if these are supported).

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 57

3.10.2 Accept_token

Accept_token(
 ­­inputs

authentication_token Authentication Token,
chan_bindings Octet String,

 ­­updated
verifying_credentials Credentials,

 ­­outputs
accepted_credentials Credentials,
deleg_req_flag Boolean,
mutual_req_flag Boolean,
replay_det_req_flag Boolean,
sequence_req_flag Boolean,
mutual_authentication_token Mutual authentication token
shared_key Shared Key,
instance_identifier Timestamp)

This routine is used by the recipient of an authentication
token to validate it. authentica­
tion_token is the token as received; chan_bindings is the identifier of the channel being authenti­
cated. See the description of Create_token for information
on the appropriate contents for
chan_bindings. DASS does not enforce any particular
content, but checks to assure that the same
value is supplied to both Create_token and Accept_token.

Verifying_credentials are the credentials of the recipient of the token. They must
include the pri­
vate key of the entity named as the target in Create_token or
the call will fail. The cached incom­
ing contexts section of the verifying credentials may be modified as a
side effect of this call.

Accepted_credentials will contain additional information about the token
creator. If delegation
was requested, these credentials can be used to make
additional calls to Create_token on the crea­
tor’s behalf. Whether or not delegation was requested, they
can also be used in the calls which
follow to gain additional information about the token creator.

The deleg_req_flag indicates whether the accepted_credentials include
delegation which can be
used by the recipient to act on behalf of the principal. Mutual_req_flag, replay_det_req_flag,
and sequence_req_flag are passed through from Create_token in support of the GSSAPI. DASS
makes no use of these fields.

The mutual_authentication_token can be returned to the token creator as proof of receipt. In
many protocols, this will be used by a client to
authenticate a server. Only the genuine server
would be able to compute the mutual_authentication_token from the token.

The shared_key and instance_identifier can be used to encrypt or sign data between the two
authenticating parties. See Create_token.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 58

This routine verifies the contents of the authentication
token in the context of the verifying cre­
dentials5 and returns a information about it. The algorithm updates a
cache of information. This
cache is not updated if the algorithm exits with an error. The
algorithm is as follows:

a) If there is a Login Ticket, but no Shared Key Ticket or
Delegator then exit with error ‘Invalid
Authenticator’. If there is a Shared Key Ticket or
Delegator, but no Login Ticket then exit
with error ‘Invalid Authentication Token’.

Look up the Encrypted Shared key in the Cached Incoming
Contexts of the credentials struc­
ture6. If it is not found then create a new cache entry as follows:

1) Encrypted Shared Key, from the Authentication Token.

2) Shared Key and Validity Interval, by decrypting the
Encrypted Shared Key using the
server private key in credentials. If the decryption fails
then exit with error ‘Invalid
Authentication Token’.

b) Check that the Validity Interval (in the cache entry)
includes the current time; return ‘Invalid
Authentication Token’ if not.

Check the Timestamp is within max­clock­skew of the
current time, return ‘invalid Authenti­
cation Token’ if not.

Reconstruct the Authenticator including the Channel Bindings passed as
a parameter.

Check that the reconstructed Authenticator is signed by the
Shared key. If not then exit with
error ‘Invalid Authentication Token’.

Look up the Authenticator Signature in the Received
Authenticators. If the same Signature is
found in the list then exit with error ‘Duplicate
Authenticator’. Otherwise add the Signature
and timestamp to the list.

If there is a Login Ticket and the Delegation Public key is
in the cache entry, then check that
the same key is specified in the Login Ticket, if not then
exit with error ‘Invalid Authentica­
tion Token’. Place the Delegation Public key in the cache if it is not
already there.

If there is a Login Ticket, the Delegation Public key was
not previously in the cache entry,
and there is a Shared Key Ticket in the Authentication
Token, then check that the Shared
Key Ticket is signed by the Delegation Public Key in the
Login Ticket. If not then exit with
error ‘Invalid Authentication Token’.

If a delegator is present in the message then decrypt the
delegator using the Shared key. If
the private key does not match the Delegation Public key
then exit with error ‘Invalid
Authentication Token’7.

5In particular the Private Key of the server is used. Also
the Cached Incoming Contexts and Incoming Timestamp
list is used.
6This cache entry is used during the execution of this
routine. An implementation must ensure that references to
the cache entry can not be affected by other users modifying
the cache. One way is to use a copy of the cache
entry, and update it at exit.
7The prime in the delegator is used to find the other prime
(from the modulus). The division must not have a
remainder. Neither prime may be 1. The two primes are then
used to reconstruct any other information needed to
perform cryptographic operations.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 59

c) Build the delegation credentials data structure as follows:

1) Claimant credentials:
(i) Login Ticket from the Authentication token
(ii) Delegation Private key from the decrypted delegator if the token is delegating.
(iii)Encrypted Shared Key from the Authentication token.

2) There are no verifier credentials.
3) Trusted authorities are copied from the verifying_credentials passed
to this routine.8

4) Remote node credentials (Node name, Username, Node Ticket) taken from the
Authentication token.

5) There are no local node credentials.
6) There are no cached contexts.

d) The returned boolean values are obtained from the Authenticator.

e) Mutual_authentication_token is computed by encrypting the
timestamp from the Authentica­
tor with the Shared key from the cache.

f) Instance_identifier is the timestamp from the Authenticator.
This and the Shared key are re­
turned to the caller for further encryption operations (if these are
supported).

3.10.3 Compare Mutual Token

Compare_mutual_token(
 ­­inputs

Generated_token Mutual authentication token,
Received_token Mutual authentication token,

 ­­outputs
equality_flag Boolean)

This routine compares two mutual authentication tokens and
tells whether they match. In the ex­
pected use, the first is the token generated by Create_token
at the initiating end and the second is
the token generated by Accept_token at the accepting end and
returned to the initiating end. This
routine can be implemented as a byte by byte comparison of the two parameters.

3.10.4 Get Node Info

get_node_info(
 ­­inputs

accepted_credentials Credentials,
 ­­outputs

nodename Name,
username String)

This routine extracts from accepted credentials the name of
the node from which the authentica­
tion token came and the named account on that node. Because
this information is not cryptogra­
phically protected within the token, this information can
only be regarded as a "hint" by the re­
ceiving application. It can, however, be verified using
Verify_node_name in a cryptographically
secure manner. This information will only be present if
these are accepted credentials and it the
caller of Create_token set the include_node_name and/or include_username flags.

8If an implementation is able to obtain the original Trusted
Authorities for the Principal then it may do so instead
of using the Servers Trusted Authorities

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 60

An actual implementation is not likely to have get_node_info
and verify_node_name as separate
calls. They are specified this way because there are
different ways this information might be
used. For most applications, the nodename and username
will be included in the token, and a
single function might extract and verify them (it might in
fact be part of accept token). For other
applications, the nodename and username will not be in the
token but rather will be computed
from other information passed during connection initiation
so a call would have to take these as
inputs. Still other applications such as ACL evaluators
that want to support the renaming and
aliasing capabilities of DASS would defer verifying node
information until they came upon an
ACL which allowed access only from a particular node. They
would then verify that the name on
the ACL was an authenticatable alias for the node which
created the token. All of these uses can
be defined in terms of calls to get_node_info and verify_node_name.

3.10.5 Get Principal UID

get_principal_uid(
 ­­inputs

accepted_credentials Credentials,
 ­­outputs

uid UID)
This routine extracts a principal UID from a set of credentials.

As with Get_Node_Info, this interface is not likely to
appear in an actual implementation, but
rather will be bundled with other routines. It is specified
this way because there might be a vari­
ety of algorithms by which credentials are evaluated and all
of them can be defined in terms of
these primitives.

In DASS, it is possible for a principal to have many
aliases. This can happen either because the
principal was given multiple names to limit the number of
CAs that need to be trusted when
authenticating to different servers or because the
principal’s name has changed and the old name
remains behind as an alias. Accept_token returns the name by
which the principal identified itself
when creating its credentials. A service may know the user
by some alias. The normal way to
handle this is for the service to know the principal’s UID
(which is constant over name changes)
and to compare it with the UID in the token to identify a
likely alias situation. It gets the UID
from the token using this routine. It then confirms the alias by
calling verify_principal_name.

The UID is in a signed portion of accepted credentials, but
the signature may not have been veri­
fied at the time this call is issued. The information
returned by this routine must therefore be
regarded as a hint. If a call to Verify_principal_name
succeeds, however, then the caller can se­
curely know that the name given to that routine and the UID returned by this one are the authen­
ticated source of the token.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 61

3.10.6 Get Principal Name

get_principal_name(
 ­­inputs

accepted_credentials Credentials,
 ­­outputs

name Name)

This routine extracts a principal name from a set of
credentials. This name is the name most re­
cently associated with the principal. It may be the name
that the principal supplied when the cre­
dentials were created (in which case it may not have been
verified yet) or it may be a different
name that has been verified.

As with Get_Node_Info and Get_Principal_UID, this routine is
not likely to appear in an actual
implementation, but will be bundled in some fashion with
related procedures. The name returned
by this procedure is not guaranteed to have been
cryptographically verified. Ver­
ify_Principal_Name performs that function.

3.10.7 Get Lifetime

get_lifetime(
 ­­inputs

Claimant_credentials Credentials,
 ­­outputs

lifetime Duration)

This routine computes the life remaining in a set of
credentials. Its most common use would be
to know to renew credentials before they expire.

Returns the remaining lifetime of the login ticket in the
credentials. This can either be the done
on the node where the original login took place, or at a
server which has been delegated to. It
indicates how much longer these credentials can be used for
further delegations. This routine will
return 0 if the login ticket has passed the end of its life,
if there is no login ticket, or if the cre­
dentials do not contain the private key certified by the
ticket (i.e. where they were created by an
authentication­without­delegation operation).

3.10.8 Verify Node Name

Verify_node_name(
 ­­inputs

nodename Name,
username String,

 ­­updated
verifying_credentials Credentials,
accepted_credentials Credentials,

 ­­outputs
Name matches Boolean)

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 62

This routine tests whether the originating node of an
authentication token can be authenticated as
having the provided name. Like a principal, a node may have
multiple aliases. One of them may
be returned by Get_node_info, but this call allows a
suspected alias to be verified. The verifying
credentials supplied with this call must be the same
credentials as were used in the Accept_token
call. The procedure for completing this request is as follows:

a) If there is no Node Ticket in the claimant credentials then return False.

b) Search the incoming context cache of the verifying
credentials for an entry containing the
same encrypted shared key as the encrypted shared key
subfield of the claimant information
of the accepted credentials. In the steps which follow,
references to "the cache" refer to this
entry. If none is found, initialize such an entry as follows:

1) Encrypted shared key from the encrypted shared key subfield
of the claimant information
of the accepted credentials.

2) The shared key and validity interval are determined by
decrypting the encrypted shared
key using the RSA private key in the verifier information of
the server credentials. If this
procedure is called after a call to Accept_token using the
same server credentials (as is
required for correct use), the shared key and validity
interval must correctly decrypt. If
called in some other context, the results are undefined.
The validity interval is not
checked.

3) Initialize all other entries in the cache to missing.

c) If there is a "local username on client node" in the cache
and it does not match the username
supplied as a parameter, return False.

d) If there is a "name of client node" in the cache and it
matches the nodename supplied as a
parameter:

1) Set the "Full name of the node" subfield of the remote node
authentication field of the
accepted credentials to be the nodename supplied as a parameter.

2) Set the "Local Username on the node" subfield of the remote
node authentication field of
the accepted credentials to be the username supplied as a parameter.

3) return True.

e) Call the Get_Pub_Keys subroutine with the
server_credentials, the nodename supplied as a
parameter, and Try_Hard=False.

f) If "Public Key of Client Node" is missing from the cache,
check all of the Public keys re­
turned to see if one verifies the node ticket. If one does,
set the "Public Key of Client Node"
and "UID of Client Node" fields in the cache to be the
PK/UID pair that verified the ticket
and set the "Local Username on Client node" field to be the
username supplied as a parame­
ter..

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 63

g) If any of the Public Key/UID pairs match the "Public Key of
Client Node" and "UID of Cli­
ent Node" fields in the cache, then:

1) Set the "name of client node" in the cache equal to the nodename
supplied as a parameter.

2) Set the "Full name of the node" subfield of the remote node
authentication field of the
accepted credentials to be the nodename supplied as a parameter.

3) Set the "Local Username on the node" subfield of the remote
node authentication field of
the accepted credentials to be the username supplied as a parameter.

4) Return True.

h) If none of them match, call Get_Pub_Keys again with
Try_Hard=True and repeat steps 6 &
7. If Step 7 fails a second time, return False.

3.10.9 Verify Principal Name

Verify_principal_name(
 ­­inputs

principal_name Name,
 ­­updated

verifier_credentials Credentials,
claimant_credentials Credentials,

 ­­outputs
Name matches Boolean)

This routine tests (in the context of the verifier
credentials) whether the claimant credentials are
authenticatable as being those of the named principal. This
procedure is called with a set of ac­
cepted credentials to authenticate their source, or with a
set of credentials produced by net­
work_login to authenticate the creator of those credentials.
 If the claimant credentials were cre­
ated by Accept_token, then the verifier credentials supplied
in this call must be the same as those
used in that call. The procedure for completing this request is as follows:

a) If there is no Login Ticket in the claimant credentials, then return False.

b) If the current time is not within the validity interval of the Login
Ticket, then return False.

c) If there is an Encrypted Shared Key present in the Claimant
information field of the claimant
credentials, then find or create a matching cache entry in
the Cached Incoming Contexts of
the verifier credentials. In the description which follows,
references to "the cache" refer to
this entry. If the cache entry must be created, its contents is set
to be as follows:

1) Encrypted shared key from the encrypted shared key subfield
of the claimant information
of the accepted credentials.

2) The shared key and validity interval are determined by
decrypting the encrypted shared
key using the RSA private key in the verifier information of
the server credentials. If this
procedure is called after a call to Accept_token using the
same server credentials (as is
required for correct use), the shared key and validity
interval must correctly decrypt. If

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 64

called in some other context, the results are undefined.
The validity interval is not
checked.

3) Initialize all other entries in the cache to missing.

d) If there is a cache entry and if the "Public Key of Client
Principal" field is present and if the
"UID of Client Principal" field is present and matches the UID in the
Login Ticket, then:

1) Set the Public Key of the principal field in the Claimant
information to be the Public Key
of Client Principal.

2) If the "Full name of the principal" field is missing from
the claimant information of the
claimant credentials, then set it to the "Name of Client Principal"
field from the cache.

e) If there is a cache entry and if the "Name of Client
Principal" field is present and if it
matches the principal name supplied to this routine and if
the UID in the cache matches the
UID in the Login Ticket, return True.

f) Call the Get_Pub_Keys subroutine with the name and verifier
credentials supplied to this
routine and Try_Hard=FALSE. Ignore any keys retrieved
where the corresponding UID
does not match the UID in the claimant credentials.

g) If the Public Key of the principal is missing from the
claimant information of the claimant
credentials, then attempt to verify the signature on the
login ticket with each public key re­
turned by Get_Pub_Keys. If verification succeeds:

1) Set the Public Key of the principal in the claimant
information of the claimant credentials
to be the Public Key that verified the ticket.

2) If the Full name of the principal in the claimant
information of the claimant credentials is
missing, set it to the name supplied to this routine.

3) If there is a cache entry, set the Name of Client Principal
to be the name supplied to this
routine, the UID of Client Principal to be the UID from the
Login Ticket, and the Public
Key of Client Principal to be the Public Key that verified the ticket.

4) Return True.

h) If the Public Key of the principal is present in the
claimant information of the claimant cre­
dentials, then see if it matches any of the public keys
returned by Get_Pub_Keys. If one of
them matches:

1) If the Full name of the principal in the claimant
information of the claimant credentials is
missing, set it to the name supplied to this routine.

2) If there is a cache entry, set the Name of Client Principal
to be the name supplied to this
routine, the UID of Client Principal to be the UID from the
Login Ticket, and the Public
Key of Client Principal to be the Public Key that verified the ticket.

3) Return True.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 65

i) If steps 7 & 8 fail, retry the call to Get_Pub_Keys with
Try_Hard=TRUE, and retry steps 7
& 8. If they fail again, return false.

3.10.10 Get Pub Keys

Get_Pub_Keys(
 ­­inputs

TA_credentials Credentials
Try_Hard Boolean,
Target Name Name,

 ­­outputs
Pub_keys Set of Public key/UID pairs

This common subroutine is used in the execution of
Create_Token, Verify_Principal_Name, and
Verify_Node_Name. Given the name of a principal, it
retrieves a set of public key/UID pairs
which authenticate that principal (normally only one
pair). It does this by retrieving from the
naming service a series of certificates, verifying the
signatures on those certificates, and verifying
that the sequence of certificates constitute a valid "treewalk".

The credentials structure passed into this procedure
represent a starting point for the treewalk.
Included in these credentials will be the public key, UID,
and name of an authority that is trusted
to authenticate all remote principals (directly or indirectly).

The "Try_Hard" bit is a specification anomaly resulting from
the fact that caches maintained by
this routine are not transparent to the calling routines.
It tells this procedure to bypass caches
when doing all name service lookups because the information
in caches is believed to be stale. In
general, a routine will call Get_Pub_Keys with Try_Hard set
false and try to use the keys re­
turned. If use of those keys fails, the calling routine may
call this routine again with Try_Hard
set true in hopes of getting additional keys. Routinely
calling this routine with Try_Hard set true
is likely to have adverse performance implications but would
not affect the correctness or the se­
curity of the operation.

The name supplied is the full X.500 name of the principal
for whom public keys are needed as
part of some authentication process.

This procedure securely learns the public keys and UIDs of
foreign principals by constructing a
valid chain of certificates between its trusted TA and the
certificate naming the foreign principal.
In the simplest case, where the TA has signed a certificate
for the foreign principal, the chain
consists of a single certificate. Otherwise, the chain must
consist of a series of certificates where
the first is signed by the TA, the last is a certificate for
the foreign principal, and the subject of
each principal in the chain is the issuer of the next.

What follows is first a definition of what constitutes a
valid chain of certificates followed by a
model algorithm which constructs all of (and only) the
valid chains which exist between the TA
and the target name.

In order to limit the implications of the compromise of a
single CA, and also to limit the com­
plexity of the search of the certificate space, there are
restrictions on what constitutes a valid

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 66

chain of certificates from the TA to the Name provided.
The only CAs whose compromise
should be able to compromise an authentication are those
controlling directories that are ances­
tors of one of the two names and that are not above a common
ancestor. Therefore, only certifi­
cates signed by those CAs will be considered valid in a
certificate chain. Normally, the CA for a
directory is expected to certify a public key and UID for
the CA of each child directory and one
parent directory. A CA may also certify another CA for some
remote part of the naming hierar­
chy, and such certificates are necessary if there are no
CAs assigned to directories high in the
naming hierarchy.

A certificate chain is considered valid if it meets the following criteria:

a) It must consist of zero or more parent certificates, followed by zero or one cross certificates,
followed by zero or more child certificates.

b) The number of parent certificates may not exceed the number of levels in the
naming hierar­
chy between the TA name and the name of the least common
ancestor in the naming hierar­
chy between the TA name and the target name.

c) Each parent certificate must be stored in the naming service under the entry of its issuer.

d) The subject of the cross certificate (if any) must be an ancestor of the target
name but must
be a longer name than the least common ancestor of the TA name and the
target name.

e) The cross certificate (if any) must have been stored in the naming
service under the entry of
its issuer or there must have been an indication in the
naming service that certificates signed
by this issuer may be stored with their subjects.

f) The issuer of each parent certificate does not have stored with it in the naming service a
cross certificate with the same issuer whose subject is an ancestor of the
target name.

g) Each child certificate must be stored in the naming service under the entry of
its subject.

h) The subject of each child certificate does not have associated with it in the naming service a
cross certificate with the same subject whose issuer is the same
as the issuer of any of the
parent certificates or the cross certificate of the chain.

i) The subject of each certificate must be the issuer of the
certificate that follows in the chain.
The equality test can be met by either of two methods:

1) The public key of the subject in the earlier certificate
verifies the signature of the later and
the subject UID in the earlier certificate is equal to the issuer UID
in the later; or

2) The public key of the subject in the earlier certificate
verifies the signature of the later, the
earlier lacks a subject UID and/or the later lacks an issuer
UID and the name of the sub­
ject in the earlier certificate is equal to the name of the issuer in the later.

j) The Public Key of the TA verifies the signature of the first certificate.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 67

k) The UID of the TA equals the UID of the issuer of the first
certificate or the UID is missing
on one or both places and the name of the TA equals the name
of the issuer of the first cer­
tificate.

l) All of the certificates are valid X.509 encodings and the
current time is within all of their
validity intervals.

If a chain is valid, the name which it authenticates can be constructed as follows:

a) If the chain contains a cross certificate, the name authenticated can be constructed by taking
the subject name from the cross certificate and appending to
it a relative name for each child
certificate which follows. The relative name is the
extension by which the subject name in
the child certificate extends the issuer name.

b) If the chain does not contain a cross certificate, the name authenticated can be constructed by
taking the TA name, truncating from it the last n name components where n is the number of
parent certificates in the chain, and appending to the result a
relative name for each child
certificate. The relative name is the extension by which
the subject name in the child certifi­
cate extends the issuer name.

 In the common case, the authenticated name will be the
subject name in the last certificate. The
authenticated name is constructed by the rules above to deal
with namespace reorganization. If a
branch of the namespace is renamed (due to, for example, a
corporate acquisition or reorganiza­
tion), only the certificates around the break point need to
be regenerated. Certificates below the
break will continue to contain the old names (until
renewed), but the algorithms above assure the
principals in that branch will be able to authenticate as
their new names. Further, if the certifi­
cates at the branch point are maintained for both the old
and new names for an interim period,
principals in the moved branch will be able to authenticate
as either their old or new names for
that interim period without having duplicate certificates.

A final complication that the algorithm must deal with is
the location of cross certificates. If a
key is compromised or for some other reason it is important
to revoke a certificate ahead of its
expiration, it is removed from the naming service. This
algorithm will only use certificates that it
has recently retrieved from the naming service, so
revocation is as effective as the mechanisms
that prevent impersonation of the naming service. There
are plans to eventually use DASS
mechanisms to secure access to the naming service; until
they are in place, name service imper­
sonation is a theoretical threat to the security of
revocation. Opinions differ as to whether it is a
practical threat. Child certificates are always stored with the subject and will
not be found unless
stored in the name server of the subject. Parent certificates are always stored with the issuer and
will not be found unless stored in the name server of the
issuer. For best security, cross certifi­
cates should be stored with the issuer because the name
server for the subject may not be ade­
quately trustworthy to perform revocation. There are
performance and availability penalties,
however, in doing so. The architecture and the algorithm
therefore support storing cross certifi­
cates with either the issuer or the subject. There must be
some sort of flag in the name service
associated with the issuer saying whether cross certificates from that issuer are permitted to be
stored in the subject’s name service entry, and if that flag
is set such certificates will be found and
used.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 68

In order to make revocation effective, DASS must assure that
naming service caches do not be­
come arbitrarily stale (the allowed age of a cache entry is
included in the sum of times with to­
gether make up the revocation time). If DASS uses a naming
service such as DNS that does not
time out cache entries, it must bypass cache on all calls
and (to achieve reasonable performance)
maintain its own naming service cache. It may be
advantageous to maintain a cache in any case
so the that the fact that the certificates have been
verified can be cached as well as the fact that
they are current.

3.10.10.1 Basic Algorithm

For ease of exposition, this first description will ignore
the operation of any caches. Permissible
modifications to take advantage of caches and enhance
performance will be covered in the next
section. This path will be followed if the Try_Hard bit is set True
on the call.

Rather than trying construct all possible chains between the
TA and the name to be authenticated
(in the event of multiple certificates per principal,
there could be exponentially many valid
chains), this algorithm computes a set of PK/UID/Name
triples that are valid for each principal
on the path between the TA and the name to be
authenticated. By doing so, it minimizes the
processing of redundant information.

a) Determining path and initialization

Several state variables are manipulated during the tree walk. These are called:

1) Current­directory­name
This is the name indicating the current place in the tree
walk. Initially, this is the name of
the TA.

2) Least­Common­Ancestor­Name
This is the portion of the names which is common to both the
CA and the Target. This is
computed at initialization and does not change during the treewalk.

3) Trusted­Key­Set
For each name which is an ancestor of either the TA or the
Target but not of the Least­
Common­Ancestor, a list of PK/UID/Name triples. This is
initialized to a single triple
from the TA information in the supplied credentials.

4) Search­when­descending
This is a list of PK/UID/Name triples of issuers that will
be trusted when descending the
tree. This set is initially empty.

5) Saved­RDNs
This is a sequence of Relative Distinguished Names (RDNs)
stripped off the right of the
target name to form Least­common­ancestor­name.
This "stack" is initially empty and is
populated during Step 3.

b) Ascending the "TA side" of the tree

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 69

While Current­directory­name is not identical to
Common­point­Name the algorithm moves
up the tree. At each step it does the following operations.

1) Find all cross certificates stored in the naming service
under Current­directory­name in
which the subject is an ancestor of the principal to be
authenticated or an indication that
cross certificates from this issuer are stored in the
subject entry. If there is an indication
that such certificates are stored in the subject entry, copy
all triples in Trusted­Key­Set for
Current­directory­name into the
"Search­when­descending" list. If any such certificates
are found, filter them to include only those which meet the following criteria:

(i) For some triple in the Trusted­Key­Set corresponding
to the Current­directory­name,
the public key in the triple verifies the signature on the
certificate and either the UID
in the triple matches the issuer UID in the certificate or the UID in the triple and/or
the certificate is missing and the name in the triple
matches the issuer name in the
certificate.

(ii) No certificates were found signed by this issuer in which
the subject name is longer
than the subject name in this certificate (i.e. if there
are cross certificates to two dif­
ferent ancestors, accept only those which lead to the closest ancestor).

(iii) The current time is within the validity interval of the certificate.

2) If any cross certificates were found (whether or not they
were all eliminated as part of the
filtering process), set Current­directory­name to
the longest name that was found in any
certificate and construct a set of PK/UID/Name triples for
that name from the certificates
which pass the filter and place them in the Trusted Key Set
associated with their subject.
Exit the ascending tree loop at this point and proceed
directly to step 3. Note that this
means that if there are cross certificates to an ancestor
of the target but they are all re­
jected (for example if they have expired), the treewalk will not construct a chain through
the least common ancestor and will ultimately fail unless a
crosslink from a lower ances­
tor is found stored with its subject. This is a security feature.

3) If no cross certificates are found, find all the parent
directory certificates for the directory
whose name is in the Current­directory­name. Filter
these to find only those which meet
the following criteria:

(i) The current time is within the validity interval.

(ii) For some triple corresponding to the
Current­directory­name, the public key in the tri­
ple verifies the signature on the certificate and either the UID in the triple matches
the issuer UID in the certificate or the UID in the triple and/or the certificate is miss­
ing and the name in the triple matches the issuer name in the certificate.

4) Construct PK/UID/Name triples from the remaining
certificates for the directory whose
name is constructed by stripping the rightmost simple name
from the Current­directory­
name and place them in the Trusted­Key­Set.

5) Strip the rightmost simple name of the Current­directory­name.

6) Repeat from step (a) (testing to see if current­directory­name is the
same as Common­
point­Name).

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 70

c) Searching the "target side" of the tree for a crosslink:

1) Initialization: set Current­directory­name to the name supplied
as input to this procedure.

2) Retrieve from the naming service all cross certificates
associated with Current­directory­
name. Filter to only those that meet the following criteria:

(i) The current time is within their validity interval.

(ii) The subject name is equal to Current­directory­name.

(iii) For some PK/UID/Name triple in the
"Search­when­descending" list compiled while
ascending the tree, the Public Key verifies the signature on
the certificate and either
the UID matches the issuer UID in the certificate or a UID is missing from the triple
and/or the certificate and the Name in the triple matches the
issuer name in the certifi­
cate.

(iv) There are no certificates found meeting criteria (ii) and
(iii) matching a
PK/UID/Name triple in the Search­when­descending list
whose subject is a directory
lower in the naming hierarchy.

3) If any qualifying certificates are found, construct
PK/UID/Name triples for each of them;
these should replace rather than supplement any triples already in the
Trusted­key­set for
that directory.

4) If after steps (b) and (c), there are no PK/UID/Name
triples corresponding to Current­
directory­name in Trusted­Key­Set, shorten
Current­directory­name by one RDN (push­
ing it onto the Saved­RDNs stack) and repeat this
process until Current­directory­name is
equal to Least­common­ancestor­name or there is at least one triple in Trusted­key­set
corresponding to Current­directory­name..

d) Descending the tree

While the list Saved­RDNs is not Empty the algorithm
moves down the tree. At each step it
does the following operations.

1) Remove the first RDN from Saved­RDNs and append it to the
Current­directory­name.

2) Find all the child directory certificates for the directory
whose name is in the current­
directory­name.

3) Filter these certificates to find only those which meet the following criteria:

(i) The current time is within the validity interval.

(ii) For some PK/UID/Name triple in the Current­key­set
for the parent directory, the
Public Key verifies the signature on the certificate and either the UID matches the
issuer UID of the certificate or the UID is missing from the triple and/or the certifi­
cate and the Name in the triple matches the issuer name in the certificate.

(iii) The issuer name in the certificate is a prefix of the
subject name and the difference
between the two names is the final RDN of Current­directory­name.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 71

4) Take the key, UID, and name from each remaining certificate
and form a new triple corre­
sponding to Current­directory­name in
Trusted­Key­Set. If this set is empty then the algo­
rithm exits with the ’Incomplete­chain­of­trustworthy­CAs’
error condition.

5) repeat from step (a), appending a new simple name to Current­directory­name.

e) Find public keys:

If there are no triples in the Trusted­Key­Set for the
named principal, then the algorithm exits
with the
‘Target­has­no­keys­which­can­be­trusted’ error
condition. Otherwise, the Public
Key and UID are extracted from each pair, duplicates are
eliminated, and this set is returned
as the Pub_keys.

3.10.10.2 Allowed Variations ­ Caching

Some use of caches can be implemented without affecting the
semantics of the Get_Pub_Keys
routine. For example, a crypto­cache could remember the
public key that verified a signature in
the past and could avoid the verification operation if the
same key was used to verify the same
data structure again. In some cases, however, it is
impossible (or at least inconvenient) for a
cache implementation to be completely transparent.

In particular, for good performance it is important that
certificates not be re­retrieved from the
naming service on every authentication. This must be
balanced against the need to have changes
to the contents of the naming service be reflected in DASS
calls on a timely basis. There are two
cases of interest: changes which cause an authentication
which previously would have succeeded
to fail and changes which cause an authentication which
previously would have failed to succeed.
These two cases are subject to different time constraints.

In general, changes that cause authentication to succeed
must be reflected quite quickly ­ on the
order of minutes. If a user attempts an operation, it
fails, the user tracks down a system manager
and causes the appropriate updates to take place, and the
user retries the operation, it is unaccept­
able for the operation to continue to fail for an extended period
because of stale caches.

Changes that cause authentication to fail must be reflected
reliably within a bounded period of
time for security reasons. If a user leaves the company, it
must be possible to revoke his ability
to authenticate within a relatively short period of time ­ say hours.

These constraints mean that a naming service cache which
contains arbitrarily old information is
unacceptable. To meet the second constraint, naming
service cache entries must be timed out
within a reasonable period of time unless in implementation
verifies that the certificate is still
present (a crypto­cache which lasted longer would be
legal; rather than deleting a name service
cache entry, in implementation might instead verify that the
entry was still present in the naming
service. This would avoid repeating the cryptographic "verify").

In order to assure that information cached for even a few
hours not deny authentication for that
extended period, it must be possible to bypass caches when
the result would otherwise be a fail­
ure. Since the performance of authentication failures is
not a serious concern, it is acceptable to
expect that before an operation fails a retry will be made
to the naming service to see if there are

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 72

any new relevant certificates (or in certain obscure
conditions, to see if any relevant certificates
have been deleted).

If on a call to Get_Pub_Keys, the Try_Hard bit is True,
then this procedure must return results
based on the contents of the naming service no more than
five minutes previous (this would nor­
mally be accomplished by ignoring name service caches and
making all operations directly to the
naming service). If the Try_Hard bit is False, this
procedure may return results based on the con­
tents of the naming service any time in the previous few
hours, in the sense that it may ignore any
certificate added in the previous few hours and may use any
certificate deleted in the previous
few hours. Procedures which call this routine with Try_Hard
set to false must be prepared to call
it again with Try_Hard True if their operation fails possibly from this result.

The exact timer values for "five minutes" and "a few hours"
are expected to be implementation
constants.

In the envisioned implementation, the entire "ascending
treewalk" is retrieved, verified, and its
digested contents cached when a principal first establishes
credentials. A mechanism should be
provided to refresh this information periodically for
principals whose sessions might be long
lived, but it would probably be acceptable in the unlikely
event of a user’s ancestor’s keys chang­
ing to require that the user log out and log back in. This
is consistent with the observed behavior
of existing security mechanisms.

The descending treewalk, on the other hand, is expected to
be maintained as a more conventional
cache, where entries are kept in a fixed amount of memory
with a "least recently used" replace­
ment policy and a watchdog timer that assures that stale
information is not kept indefinitely. A
call to Get_Pub_Keys with Try_Hard set false would first
check that cache for relevant certifi­
cates and only if none were found there would it go out to
the naming service. If there were
newer certificates in the naming service, they might not be
found and an authentication might
therefore fail.

When Try_Hard is false, an implementation may assume that
certificates not in the cache do not
exist so long as that assumption does not cause an
authentication to falsely succeed. In that case,
it may only make that assumption if the certificates have
been verified to not exist within the
revocation time (a few hours).

3.11 DASSlessness Determination Functions

In order to provide better interoperability with alternative
authentication mechanisms and to pro­
vide backward compatibility with older (insecure)
authentication mechanisms, it is sometimes
important to be able to determine in a secure way what the
appropriate authentication mechanism
is for a particular named principal. For some
applications, this will be done by a local mecha­
nism, where either the person creating access control
information must know and specify the
mechanism for each principal or a system administrator on
the node must maintain a database
mapping names to mechanisms. Three applications come to
mind where scaleability makes such
mechanisms implausible:

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 73

a) To transparently secure proxy­based applications (like
rlogin) in an environment where some
hosts have been upgraded to support DASS and some have not,
a node must be willing to
accept connections authenticated only by their network
addresses but only if they can be as­
sured that such nodes do not have DASS installed. Access
to a resource becomes secure
without administrative action when all nodes authorized to access it
have been upgraded.

In this scenario, the server node must be able to determine
whether the client node is DAS­
Sless in a secure fashion.

b) Similarly, in a mixed environment where some servers are
running DASS and some are not,
it may be desirable for clients to authenticate servers if
they can but it would be unacceptable
for a client to stop being able to access a DASSless server
once DASS is installed on the
client. In such a situation where server authentication is
desirable but not essential, the client
would like to determine in a secure fashion whether the
server can accept DASS authentica­
tion.

c) In a DASS/Kerberos interoperability scenario, a server may
decide that Kerberos authentica­
tion is "good enough" for principals that do not have DASS
credentials without introducing
trust in on­line authorities when DASS credentials are
available. In parallel with case 1, we
want it to be true that when the last principal with
authority to access an object is upgraded to
DASS, we automatically cease to trust PasswdEtc servers
without administrative action on
the part of the object owner. For this purpose, the
authenticator must learn in a secure fash­
ion that the principal is incapable of DASS authentication.

Reliably determining DASSlessness is optional for
implementations of DASS and for applica­
tions. No other capabilities of DASS rely on this one.

The interface to the DASSlessness inquiry function is
specified as a call independent of all oth­
ers. This capability must be exposed to the calling
application so that a server that receives a
request and no token can ask whether the named principal
should be believed without a token. It
might improve performance and usability if in real
interfaces DASSlessness were returned in ad­
dition to a bad status on the function that creates a token
if the token is targeted toward a server
incapable or processing it. An application could then
decide whether to make the request without
a token (and give up server authentication) or to abort the request.

3.11.1 Query DASSlessness

Query_DASSlessness(
 ­­inputs

verifying_credentials Credentials,
principal_name Name,

 ­­outputs
alternate_authentication Set of OIDs)

This function uses the verifying credentials to search for
an alternative authentication mechanism
certificate for the named principal or for any CA on the
path between the verifying credentials
and the named principal. Such a certificate is identical to
an DASS X.509 certificate except that

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 74

it lists a different algorithm identifier for the public
key of the subject than that expected by
DASS.

This function is implemented identically to Get_Pub_Keys except:

a) If in any set of certificates found, no valid DASS
certificate is found and one or more certifi­
cates are found that would otherwise be valid except for an
invalid subject public key OID,
the OID from that certificate or certificates is returned and the
algorithm terminates.

b) On initial execution, Try_Hard=False. If the first
execution fails to retrieve any valid
PK/UID pairs but also fails to find any invalid OID
certificates, repeat the execution with
Try_Hard=True.

c) If the either execution finds PK/UID pairs or if neither
finds and invalid OID certificates, fail
by returning a null set.

4 Certificate and message formats

4.1 ASN.1 encoding

Some definitions are taken from X.501 and X.509.

Dass DEFINITIONS ::=

BEGIN

­­CCITT Definitions:
joint­iso­ccitt OBJECT IDENTIFIER ::= {2}
ds OBJECT IDENTIFIER ::= {joint­iso­ccitt 5}
algorithm OBJECT IDENTIFIER ::= {ds 8}
encryptionAlgorithmOBJECT IDENTIFIER ::= {algorithm 1}
hashAlgorithm OBJECT IDENTIFIER ::= {algorithm 2}
signatureAlgorithm OBJECT IDENTIFIER ::= {algorithm 3}
rsa OBJECT IDENTIFIER ::= {encryptionAlgorithm 1}

iso OBJECT IDENTIFIER ::= {1}
identified­organization OBJECT IDENTIFIER ::= {iso 3}
ecma OBJECT IDENTIFIER ::= {identified­organization 12}
member­company OBJECT IDENTIFIER ::= {ecma 2}
digital OBJECT IDENTIFIER ::= {member­company 1011}

­­1989 OSI Implementors Workshop "Stable" Agreements
oiw OBJECT IDENTIFIER ::= {identified­organization 14}
dssig OBJECT IDENTIFIER ::= {oiw 7}
oiwAlgorithm OBJECT IDENTIFIER ::= {dssig 2}
oiwEncryptionAlgorithm OBJECT IDENTIFIER ::= {oiwAlgorithm 1}

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 75

oiwHashAlgorithm OBJECT IDENTIFIER ::= {oiwAlgorithm 2}
oiwSignatureAlgorithm OBJECT IDENTIFIER ::= {oiwAlgorithm 3}
oiwMD2 OBJECT IDENTIFIER ::= {oiwHashAlgorithm 1} ­­null parameter
oiwMD2withRSA OBJECT IDENTIFIER ::= {oiwSignatureAlgorithm 1} ­­null pa­
rameter

­­X.501 definitions
AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY
AttributeValueAssertion ::= SEQUENCE {AttributeType,AttributeValue}

Name ::= CHOICE { ­­only one for now
RDNSequence

 }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence

RelativeDistinguishedName ::= SET OF AttributeValueAssertion

­­X.509 definitions (with proposed 1992 extensions presumed)

ENCRYPTED MACRO ::=
BEGIN
TYPE NOTATION ::= type(ToBeEnciphered)
VALUE NOTATION ::= value(VALUE BIT STRING)
END ­­ of ENCRYPTED

SIGNED MACRO ::=
BEGIN
TYPE NOTATION ::= type (ToBeSigned)
VALUE NOTATION ::= value (VALUE
SEQUENCE{

ToBeSigned,
AlgorithmIdentifier, ­­of the algorithm used to gener­

ate the signature
ENCRYPTED OCTET STRING ­­where the octet string is the

result
­­of the hashing of the value of
­­"ToBeSigned"

}
)

END ­­ of SIGNED

SIGNATURE MACRO ::=
BEGIN
TYPE NOTATION ::= type (OfSignature)
VALUE NOTATION ::= value (VALUE

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 76

SEQUENCE {
AlgorithmIdentifier, ­­of the algorithm used to com­

pute the signature
ENCRYPTED OCTET STRING ­­ where the octet string is a

function
­­ (e.g. a compressed or hashed ver­

sion)
­­ of the value ’OfSignature’, which

may
­­ include the identifier of the algo­

rithm
­­ used to compute the signature

}
)

END ­­ of SIGNATURE

Certificate ::= SIGNED SEQUENCE {
version [0] Version DEFAULT v1988,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
valid Validity,
subject Name,
subjectPublicKey SubjectPublicKeyInfo,
issuerUID [1] IMPLICIT UID OPTIONAL, ­­ v1992
subjectUID [2] IMPLICIT UID OPTIONAL ­­ v1992
}

­­The Algorithm Identifier for both the signature field and in the
signature itself is:

­­ oiwMD2withRSA (1.3.14.7.2.3.1)

Version ::= INTEGER {v1988(0), v1992(1)}

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {
NotBefore UTCTime,
NotAfter UTCTime
}

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameter ANY DEFINED BY algorithm OPTIONAL
}

­­The algorithms we support in one context or another are:

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 77

­­oiwMD2withRSA (1.3.14.7.2.3.1) with parameter NULL
­­rsa (2.5.8.1.1) with parameter keysize INTEGER which is the key­

size in bits
­­decDEA (1.3.12.1001.7.1.2) with optional parameter missing
­­decDEAMAC (1.3.12.2.1011.7.3.3) with optional parameter missing

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,

­­ rsa (2.5.8.1.1)
subjectPublicKey BIT STRING

­­ the "bits" further decode into a DASS public
key

}

UID ::= BIT STRING

­­ the following definitions are for Digital specified Algorithms

cryptoAlgorithm OBJECT IDENTIFIER ::= {digital 7}

decEncryptionAlgorithm OBJECT IDENTIFIER ::= {cryptoAlgorithm 1}
decHashAlgorithm OBJECT IDENTIFIER ::= {cryptoAlgorithm 2}
decSignatureAlgorithm OBJECT IDENTIFIER ::= {cryptoAlgorithm 3}
decDASSLessness OBJECT IDENTIFIER ::= {cryptoAlgorithm 6}

decMD2withRSA OBJECT IDENTIFIER ::= {decSignatureAlgorithm 1}
decMD4withRSA OBJECT IDENTIFIER ::= {decSignatureAlgorithm 2}
decDEAMAC OBJECT IDENTIFIER ::= {decSignatureAlgorithm 3}

decDEA OBJECT IDENTIFIER ::= {decEncryptionAlgorithm 2}

decMD2 OBJECT IDENTIFIER ::= {decHashAlgorithm 1}
decMD4 OBJECT IDENTIFIER ::= {decHashAlgorithm 2}

ShortPosixTime ::= INTEGER ­­ number of seconds since base time

LongPosixTime ::= SEQUENCE {
INTEGER, ­­ number of seconds since base time
INTEGER ­­ number of nanoseconds since second
}

ShortPosixValidity ::= SEQUENCE {
notBefore ShortPosixTime,
notAfter ShortPosixTime }

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 78

­­Note: Annex C of X.509 prescribes the following format for the
representa­
tion of a public key, ­­but does not give the structure a name.

DASSPublicKey ::= SEQUENCE {
modulus INTEGER,
exponent INTEGER
}

DASSPrivateKey ::= SEQUENCE {
p INTEGER , ­­ prime p
q [0] IMPLICIT INTEGER OPTIONAL , ­­ prime q
mod[1] IMPLICIT INTEGER OPTIONAL, ­­ modulus
exp [2] IMPLICIT INTEGER OPTIONAL, ­­ public exponent
dp [3] IMPLICIT INTEGER OPTIONAL , ­­ exponent mod p
dq [4] IMPLICIT INTEGER OPTIONAL , ­­ exponent mod q
cr [5] IMPLICIT INTEGER OPTIONAL , ­­ Chinese remainder coeffi­

cient
uid[6] IMPLICIT UID OPTIONAL,
more[7] IMPLICIT BIT STRING OPTIONAL ­­Reserved for future use
}

LocalUserName ::= OCTET STRING
ChannelId ::= OCTET STRING
VersionNumber ::= OCTET STRING (SIZE(3))

­­ first octet is major version
­­ second octet is minor version
­­ third octet is ECO rev.

versionZero VersionNumber ::= ’000000’H

Authenticator ::= SIGNED SEQUENCE {
type BIT STRING,

 ­­ first bit ‘delegation required’
 ­­ second bit ‘Mutual Authentication Re­

quested’
whenSigned LongPosixTime ,
channelId [3] IMPLICIT ChannelId OPTIONAL

­­ channel bindings are included when doing the
­­ signature, but excluded when transmitting the
­­ Authenticator

}

­­ uses decDEAMAC (1.3.12.2.1011.7.3.3)

EncryptedKey ::= SEQUENCE {
algorithm AlgorithmIdentifier,

­­ uses rsa (2.5.8.1.1)
encryptedAuthKey BIT STRING

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 79

­­ as defined in section 4.4.5
}

SignatureOnEncryptedKey ::= SIGNATURE EncryptedKey
­­ uses oiwMD2withRSA (1.3.14.7.2.3.1)
­­ Signature bits computed over EncryptedKey structure

LoginTicket ::= SIGNED SEQUENCE {
version [0] IMPLICIT VersionNumber DEFAULT ver­

sionZero,
validity ShortPosixValidity ,
subjectUID UID ,
delegatingPublicKeySubjectPublicKeyInfo
}
­­ uses oiwMD2withRSA (1.3.14.7.2.3.1)

Delegator ::= SEQUENCE {
algorithm AlgorithmIdentifier

­­ decDEA encryption (1.3.12.1001.7.1.2)
encryptedPrivKey ENCRYPTED DASSPrivateKey,

­­ (only p is included)
}

UserClaimant ::= SEQUENCE {
userTicket [0] IMPLICIT LoginTicket,
evidence CHOICE {

delegator [1] IMPLICIT Delegator ,
 ­­ encrypted delegation private key
 ­­ under DES authenticating key
 ­­ present if delegating

sharedKeyTicketSignature [2]
IMPLICIT SignatureOnEncryptedKey
 ­­ present if not delegating

} ,
userName [3] IMPLICIT Name OPTIONAL

 ­­ name of user principal
}

EncryptedKeyandUserName ::= SEQUENCE {
encryptedKey EncryptedKey ,
username LocalUserName
}

SignatureOnEncryptedKeyandUserName ::=

SIGNATURE EncryptedKeyandUserName
 ­­ uses oiwMD2withRSA (1.3.14.7.2.3.1)
­­ Signature bits computed over

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 80

­­ EncryptedKeyandUserName structure
­­ using node private key

}

NodeClaimant ::= SEQUENCE {
nodeTicket Signature[0] IMPLICIT

SignatureOnEncryptedKeyandUserName,
nodeName [1] IMPLICIT Name OPTIONAL,
username [2] IMPLICIT LocalUserName OPTIONAL
}

AuthenticationToken ::= SEQUENCE {
version [0] IMPLICIT VersionNumber DEFAULT ver­

sionZero,
authenticator [1] IMPLICIT Authenticator ,
encryptedKey [2] IMPLICIT EncryptedKey OPTIONAL ,

 ­­ required if initiating token
userclaimant [3] IMPLICIT UserClaimant OPTIONAL ,

 ­­ missing if only doing node authentication
 ­­ required if not doing node authentication

nodeclaimant [4] IMPLICIT NodeClaimant OPTIONAL
 ­­ missing if only doing principal authenti­

cation
 ­­ required if not doing principal authenti­

cation
}

MutualAuthenticationToken ::= CHOICE {

v1Response [0] IMPLICIT OCTET STRING (SIZE(6))
­­ Constructed as follows: A single DES block
­­ of eight octets is constructed from the two
­­ integers in the timestamp. First four bytes
­­ are the high order integer encoded MSB
­­ first; Last four bytes are the low order
­­ integer encoded MSB first. The block is
­­ encrypted using the shared DES key, and
­­ the first six bytes are the OCTET STRING.
­­ With the [0] type and 6­byte length, the
­­ MutualAuthenticationToken has a fixed
­­ length of eight bytes.

}

END

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 81

4.2 Encoding Rules

Whenever a structure is to be signed it must always be
constructed the same way. This is particu­
larly important where a signed structure has to be
reconstructed by the recipient before the signa­
ture is verified. The rules listed below are taken from X.509.

− the definite form of length encoding shall be used, encoded
in the minimum number of oc­
tets;

− for string types, the constructed form of encoding shall not be used;

− if the value of a type is its default value, it shall be absent;

− the components of a Set type shall be encoded in ascending order of
their tag value;

− the components of a Set­of type shall be encoded in ascending order
of their octet value;

− if the value of a Boolean type is true, the encoding shall have its
contents octet set to ‘FF’16;

− each unused bits in the final octet of the encoding of a
BitString value, if there are any, shall
be set to zero;

− the encoding of a Real type shall be such that bases 8, 10
and 16 shall not be used, and the
binary scaling factor shall be zero.

4.3 Version numbers and forward compatibility

The LoginTicket and AuthenticationToken structures contain
a three octet version identifier
which is intended to ease transition to future revisions of
this architecture. The default value, and
the value which should always be supplied by implementations
of this version of the architecture
is 0.0.0 (three zero octets). The first octet is the
major version. An implementation of this ver­
sion of the architecture should refuse to process data
structures where it is other than zero, be­
cause changing it indicates that the interpretation of some
subsidiary data structure has changed.
The second octet is the minor version. An implementation
of this version of the architecture
should ignore the value of this octet. Some future version
of the architecture may set a value
other than zero and may specify some different processing of
the remainder of the structure based
on that different value. Such a change would be backward
compatible and interoperable. The
third octet is the ECO revision. No implementation should
make any processing decisions based
on the value of that octet. It may be logged, however, to
help in debugging interoperability prob­
lems.

In the CDC protocol, there is also a three octet version
numbering scheme, where versions 1.0.0
and 2.0.0 have been defined. Implementations should follow
the same rules above and reject ma­
jor version numbers greater than 2.

ASN.1 is inherently extensible because it allows new fields
to be added "onto the end" of existing
data structures in an unambiguous way. Implementations of
DASS are encouraged to ignore any
such additional fields in order to enhance backwards
compatibility with future versions of the ar­

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 82

chitecture. Unfortunately, commonly available ASN.1
compilers lack this capability, so this be­
havior cannot reasonably be required and may limit options for future
extensions.

4.4 Cryptographic Encoding

Some of the substructures listed in the previous sections
are specified as ENCRYPTED OCTET
STRINGs containing encrypted information. DASS uses the
DES, RSA, and MD2 cryptosys­
tems Each of those cryptosystems specifies a function from
octet string into another in the pres­
ence of a key (except MD2, which is keyless). This
section describes how to form the octet
strings on which the DES and RSA operations are performed.

4.4.1 Algorithm Independence vs. Key Parity

All of the defined encodings for DASS for secret key
encryption are based on DES. It is in­
tended, however, that other cryptosystems could be
substituted without any other changes for for­
mats or algorithms. The required "form factor" for such a
cryptosystem is that it have a 64 bit
key and operate on 64 bit blocks (this appears to be a
common form factor for a cryptosystem).
For this reason, DES keys are in all places treated as though
they were 64 bits long rather than 56.
Only in the operation of the algorithm itself are eight bits
of the key dropped and key parity bits
substituted. Choosing a key always involves picking a 64 bit random number.

4.4.2 Password Hashing

Encrypted credentials are encrypted using DES as described
in the next section. The key for that
encryption is derived from the user’s password and name by the
following algorithm:

a) Put the rightmost RDN of the user’s name in canonical form
according to BER and the
X.509 encoding rules. For any string types that are case
insensitive, map to upper case, and
where matching is independent of number of spaces collapse
all multiple spaces to a single
space and delete leading and trailing spaces.

Note: the RDN is used to add "salt" to the hash calculation
so that someone can’t precom­
pute the hash of all the words in a dictionary and then
apply them against all names. Deriv­
ing the salt from the last RDN of the name is a compromise.
 If it were derived from the
whole name, all encrypted keys would be obsoleted when a
branch of the namespace was
renamed. If it were independent of name, interaction with a
login agent would take two ex­
tra messages to retrieve the salt. With this scheme,
encrypted keys are obsoleted by a
change in the last RDN and if a final RDN is common to a
large number of users, dictionary
attacks against them are easier; but the common case works as desired.

b) Compute TEMP as the MD2 message digest of the concatenation
of the password and the
RDN computed above.

c) Repeat the following 40 times: Use the first 64 bits of
TEMP as a DES key to encrypt the
second 64 bits; XOR the result with the first 64 bits of
TEMP; and compute a new TEMP as
MD2 of the 128 bit result.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 83

d) Use the final 64 bits of the result (called hash1) as the
key to decrypt the encrypted creden­
tials. Use the first 64 bits (called hash2) as the proof
of knowledge of the password for pres­
entation to a login agent (if any).

4.4.3 Digital DEA encryption

DES encryption is used in the following places:

− In the encryption of the encrypted credentials structure

− To encrypt the delegator in authentication tokens

− To encrypt the time in the mutual authenticator

In the first two cases, a varying length block of
information coded in ASN.1 is encrypted. This is
done by dividing the block of information into 8 octet
blocks, padding the last block with zero
bytes if necessary, and encrypting the result using the CBC mode of
DES. A zero IV is used.

In the third case, a fixed length (8 byte) quantity (a
timestamp) is encrypted. The timestamp is
mapped to a byte string using "big endian" order and the
block is encrypted using the ECB mode
of DES.

4.4.4 Digital MAC Signing

DES signing is used in the Authenticator. Here, the
signature is computed over an ASN.1 struc­
ture. The signature is the CBC residue of the structure
padded to a multiple of eight bytes with
zeros. The CBC is computed with an IV of zero.

4.4.5 RSA Encryption

RSA encryption is used in the Encrypted Shared Key. RSA
encryption is best thought of as oper­
ating on blocks which are integers rather than octet strings
and the results are also integers. Be­
cause an RSA encryption permutes the integers between zero
and (modulus­1), it is generally
thought of as acting on a block of size
(keysizeinbits­1) and producing a block of size (keysizein­
bits) where keysizeinbits is the smallest number of bits in which the
modulus can be represented.

DASS only supports key sizes which are a multiple of eight bits.9

The encrypted shared key structure is laid out as follows:

− The DES key to be shared is placed in the last eight bytes

− The POSIX format creation time encoded in four bytes using
big endian byte order is placed
in the next four (from the end) bytes

− The POSIX format expiration time encoded in four bytes
using big endian byte order is
placed in the next four (from the end) bytes

9This restriction is only required to support interoperation
with certain existing implementations. If the key size
is not a multiple of eight bits, the high order byte may not
be able to hold values as large as the mandated ’64’.
This is not a problem so long as the two high order bytes
together are non­zero, but certain early implementations
check for the value ’64’ and will not interoperate with
implementations that use some other value.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 84

− Four zero bytes are placed in the next four (from the end) bytes

− The first byte contains the constant ’64’ (decimal)

− All remaining bytes are filled with random bytes (the
security of the system does not depend
on the cryptographic randomness of these bytes, but they
should not be a frequently repeat­
ing or predictable value. Repeating the DES key from the last bytes
would be good).

The RSA algorithm is applied to the integer formed by
treating the bytes above as an integer in
big endian order and the resulting integer is converted to a
BIT STRING by laying out the integer
in ’big endian’ order.

On decryption, the process is reversed; the decryptor should
verify the four explicitly zero bytes
but should not verify the contents of the high order byte or the random bytes.

4.4.6 oiwMD2withRSA Signatures

RSA­MD2 signatures are used on certificates, login
tickets, shared key tickets, and node tickets.
In all cases, a signature is computed on an ASN.1 encoded
string using an RSA private key. This
is done as follows:

− The MD2 algorithm is applied to the ASN.1 encoded string to
produce a 128 bit message
digest

− The message digest is placed in the low order bytes of the RSA block
(big endian)

− The next two lowest order bytes are the ASN.1 ’T’ and ’L’ for an OCTET STRING.

− The remainder of the RSA block is filled with zeros

− The RSA operation is performed, and the resulting integer is
converted to an octet string by
laying out the bytes in big endian order.

On verification, a value like the above or one where the message digest is present but the ’T’ and
’L’ are missing (zero) should be accepted for backwards
compatibility with an earlier definition
of this crypto algorithm.

4.4.7 decMD2withRSA Signatures

This algorithm is the same as the oiwMD2withRSA algorithm as
defined above. We allocated an
algorithm object identifier from the Digital space in case
the definition of that OID should
change. It will not be used unless the meaning of oiwMD2withRSA
becomes unstable.

Internet Draft DASS 10 December 1992

Charles Kaufman Page 85

Annex A
Typical Usage

This annex describes one way a system could use DASS
services (as described in section 3) to
provide security services. While this example provided
motivation for some of the properties of
DASS, it is not intended to represent the only way that DASS
may be used. This goes through
the steps that would be needed to install DASS "from scratch".

A.1 Creating a CA

A CA is created by initializing its state. Each CA can sign
certificates that will be placed in some
directory in the name service. Before these certificates
will be believed in a wider context than
the sub­tree of the name space which is headed by that
directory, the CA must be certified by a
CA for the parent directory. The procedure below
accomplishes this. For most secure operation,
the CA should run on an off­line system and communicate
with the rest of the network by inter­
changing files using a simple specialized mechanism such as
an RS232 line or a floppy disk. It is
assumed that access to the CA is controlled and that the CA
will accept instructions from an op­
erator.

− Call Install_CA to create the CA State.
This state is saved within the CA system and is never disclosed.

− If this is the first CA in the namespace and the CA is
intended to certify only members of a
single directory, we are done. Otherwise, the new CA must
be linked into the CA hierarchy
by cross­certifying the parent and children of this CA.
There is no requirement that CA hier­
archies be created from the root down, but to simplify
exposition, only this case will be de­
scribed. The newly created CA must learn its name, its UID,
the UID of its parent directory,
and the public key of the parent directory CA by some out
of band reliable means. Most
likely, this would be done by looking up the information in
the naming service and asking
the CA operator to verify it. The CA then forms this
information into a parent certificate and
signs it using the Create_certificate function. It
communicates the certificate to the network
and posts it in the naming service.

− This name, UID, and public key of the new CA are taken to
the CA of the parent directory,
which verifies it (again by some unspecified
out­of­band mechanism) and calls Cre­

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 86

ate_Certificate to create a child certificate using its own Name and UID in the issuer fields.
This certificate is also placed in the naming service.

A CA can sign certificates for more than one directory. In
this case it is possible that a single CA
will take the role of both CAs in the example above. The
above procedure can be simplified in
this case, as no interchange of information is required.

A.2 Creating a User Principal

A system manager may create a new user principal by
invoking the Create_principal function
supplying the principal’s name, UID, and the public key/UID
of the parent CA. The public key
and UID must be obtained in a reliable out of band manner.
This is probably by having knowl­
edge of that information "wired into" the utility which
creates new principals. At account crea­
tion time, the system manager must supply what will become
the user’s password. This might be
done by having the user present and directly enter a
password or by having the password selected
by some random generator.

The trusted authority certificate and corresponding user
public key generated by the Cre­
ate_principal function are sent to the CA which verifies
its contents (again by an out­of­band
mechanism) and signs a corresponding certificate. The
encrypted credentials, CA signed certifi­
cate, and trusted authority certificates are all placed in the naming service.

The process by which the password is made known to the user
must be protected by some out­of­
band mechanism.

In some cases the principal may wish to generate its own
key, and not use the En­
crypted_Credentials. (E.g. if the Principal is represented
by a Smart Card). This may be done us­
ing a procedure similar to the one for creating a new CA.

A.3 Creating a Server Principal

A server also has a public/private key pair. Conceptually,
the same procedure used to create a
user principal can be used to create a server. In practice,
the most important difference is likely
to be how the password is protected when installing it on a server
compared to giving it to a user.

A server may wish to retrieve (and store) its Encrypted
Credentials directly and never have them
placed in the naming service. In this case some other
mechanism can be used (e.g. passing the
floppy disk containing the encrypted credentials to the
server). This would require a variant of the
Initialize_Server routine which does not fetch the Encrypted
Credentials from the naming service.

A.4 Booting a Server Principal

When the server first boots it needs its name
(unreliably) and password (reliably). It then calls
Initialize_Server to obtain its credentials and trusted
authority certificates (which it will later need
in order to authenticate users). These credentials never
time out, and are expected to be saved for
a long time. In particular the associated Incoming
Timestamp List must be preserved while there

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 87

are any timestamps on it. It is desirable to preserve the
Cached Incoming Contexts as long as
there are any contexts likely to be reused.

If a server wants to initiate associations on its own
behalf then it must call Gener­
ate_Server_Ticket. It must repeat this at intervals if the expiration
period expires.

A node that wishes to do node authentication (or which acts
as a server under its own name) must
be created as a server.

A.5 A user logs on to the network

The system that the user logs onto finds the user’s name
and password. It then calls Net­
work_Login to obtain credentials for the user. These
credentials are saved until the user wants to
make a network connection. The credentials have a time limit,
so the user will have to obtain new
credentials in order to make connections after the time
limit. The credentials are then checked by
calling Verify_Principal_Name, in order to check that the
key specified in the encrypted creden­
tials has been certified by the CA.

If the system does source node authentication it will call
Combine_credentials, once the local us­
ername has been found. (This can either be found by looking
the principal’s global name up in a
file, or the user can be asked to give the local name
directly. Alternatively the user can be asked
to give his local username, which the system looks up to find the global name).

A.6 An Rlogin (TCP/IP) connection is made

When the user calls a modified version of the rlogin
utility, it calls Create_token in order to cre­
ate the Initial Authentication Token, which is passed to the
other system as part of the rlogin pro­
tocol. The rlogind utility at the destination node calls
Accept_token to verify it. It then looks up
in a local rhosts­like database to determine whether this
global user is allowed access to the re­
quested destination account. It calls
Verify_principal_name and/or Verify_node_name to con­
firm the identity of the requester. If access is allowed,
the connection is accepted and the Mutual
Authentication Token is returned in the response message.

The source receives the returned Mutual Authentication Token
and uses it to confirm it commu­
nicating with the correct destination node.

Rlogind then calls Combine_credentials to combine its
node/account information with the global
user identification in the received credentials in case the
user accesses any network resources
from the destination system.

A.7 A Transport­Independent Connection

As an alternative to the description in A.6, an application
wishing to be portable between differ­
ent underlying transports may call create_token to create
an authentication token which it then
sends to its peer. The peer can then call accept_token and
verify_principal_name and learn the
identity of the requester.

Internet Draft DASS 10 December 1992

Charles Kaufman Page 88

Annex B
Support of the GSSAPI

In order to support applications which need to be portable
across a variety of underlying security
mechanisms, a "Generic Security Service API" (or GSSAPI)
was designed which gives access to
a common core of security services expected to be provided
by several mechanisms. The GSS­
API was designed with DASS, Kerberos V4, and Kerberos V5 in
mind, and could be written as a
front end to any or all of those systems. It is hoped that
it could serve as an interface to other
security systems as well.

Application portability requires that the security services
supported be comparable. Applications
using the GSSAPI will not be able to access all of the
features of the underlying security mecha­
nisms. For example, the GSSAPI does not allow access to the
"node authentication" features of
DASS. To the extent the underlying security mechanisms do
not support all the features of GSS­
API, applications using those features will not be portable
to those security mechanisms. For ex­
ample, Kerberos V4 does not support delegation, so
applications using that feature of the GSS­
API will not be portable to Kerberos V4.

This annex explains how the GSSAPI can be implemented using
the primitive services provided
by DASS.

B.1 Summary of GSSAPI

The latest draft of the GSSAPI specification is available as
an internet draft. The following is a
brief summary of that evolving document and should not be
taken as definitive. Included here
are only those aspects of GSSAPI whose implementation would be DASS specific.

The GSSAPI provides four classes of functions: Credential
Management, Context­Level Calls,
Per­message calls, and Support Calls; two types of
objects: Credentials and Contexts; and two
kinds of data structures to be transmitted as opaque byte
strings: Tokens and Messages. Creden­
tials hold keys and support information used in creating
tokens. Contexts hold keys and support
information used in signing and encrypting messages.

The Credential Management functions of GSSAPI are
"incomplete" in the sense that one could
not build a useful security implementation using only
GSSAPI. Functions which create creden­
tials based on passwords or smart cards are needed but not
provided by GSSAPI. It is envisioned

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 89

that such functions would be invoked by security mechanism
specific functions at user login or
via some separate utility rather than from within
applications intended to be portable. The Cre­
dential Management functions available to portable applications are:

− GSS_Acquire_cred: get a handle to an existing credential
structure based on a name or proc­
ess default.

− GSS_Release_cred: release credentials after use.

The Context­Level Calls use credentials to establish
contexts. Contexts are like connections:
they are created in pairs and are generally used at the two
ends of a connection to process mes­
sages associated with that connection. The Context­Level Calls of
interest are:

− GSS_Init_sec_context: given credentials and the name of a
destination, create a new context
and a token which will permit the destination to create a corresponding context.

− GSS_Accept_sec_context: given credentials and an incoming
token, create a context corre­
sponding to the one at the initiating end and provide information
identifying the initiator.

− GSS_Delete_sec_context: delete a context after use.

The Per­Message Calls use contexts to sign, verify,
encrypt, and decrypt messages between the
holders of matching contexts. The Per­Message Calls are:

− GSS_Sign: Given a context and a message, produces a string
of bytes which constitute a
signature on a provided message.

− GSS_Verify: Given a context, a message, and the bytes
returned by GSS_Sign, verifies the
message to be authentic (unaltered since it was signed by the
corresponding context).

− GSS_Seal: Given a context and a message, produces a string
of bytes which include the
message and a signature; the message may optionally be encrypted.

− GSS_Unseal: Given a context and the string of bytes from
GSS_Seal, returns the original
message and a status indicating its authenticity.

The Support Calls provide utilities like translating names and status
codes into printable strings.

B.2 Implementation of GSSAPI over DASS

B.2.1 Data Structures

The objects and data structures of the GSSAPI do not map
neatly into the objects and data struc­
tures of the DASS architecture. This section describes how
those data structures can be imple­
mented using the DASS data structures and primitives

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 90

Credential handles correspond to the credentials structures
in DASS, where the portable API as­
sumes that the credential structures themselves are kept
from applications and handles are passed
to and from the various subroutines.

Context initialization tokens correspond to the tokens of
DASS. The GSSAPI prescribes a par­
ticular ASN.1 encoded form for tokens which includes a
mechanism specific bit string within it.
An implementation of GSSAPI should enclose the DASS token within the
GSSAPI "wrapper".

Context handles have no corresponding structure in DASS. The
Create_token and Accept_token
calls of DASS return a shared key and instance identifier.
An implementation of the GSSAPI
must take those values along with some other status
information and package it as a "context"
opaque structure. These data structures must be allocated and freed
with the appropriate calls.

Per­message tokens and sealed messages have no
corresponding data structure within DASS. To
fully support the GSSAPI functionality, DASS must be
extended to include this functionality.
These data structures are created by cryptographic routines
given the keys and status information
in context structures and the messages passed to them.
While not properly part of the DASS ar­
chitecture, the formats of these data structures are included in section C.3.

B.2.2 Procedures

This section explains how the functions of the GSSAPI can be
provided in terms of the Services
Provided by DASS. Not all of the DASS features are accessible through
the GSSAPI.

B.2.2.1 GSS_Acquire_cred

The GSSAPI does not provide a mechanism for logging in
users or establishing server creden­
tials. It assumes that some system specific mechanism
created those credentials and that applica­
tions need some mechanism for getting at them. A model
implementation might save all creden­
tials in a node­global pool indexed by some sort of
credential name. The credentials in the pool
would be access controlled by some local policy which is
not concern of portable applications.
Those applications would simply call GSS_Acquire_cred and
if they passed the access control
check, they would get a handle to the credentials which could be used
in subsequent calls.

B.2.2.2 GSS_Release_cred

This call corresponds to the "delete_credentials" call of DASS.

B.2.2.3 GSS_Init_sec_context

In the course of a normal mutual authentication, this
routine will be called twice. The procedure
can determine whether this is the first or second call by
seeing whether the "in­
put_context_handle" is zero (it will be on the first
call). On the first call, it will use the DASS
Create_token service to create a token and it will also
allocate and populate a "context" structure.
That structure will hold the key, instance identifier, and
mutual authentication token returned by
Create_token and will in addition hold the flags which were
passed into the Init_sec_context call.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 91

The token returned by Init_sec_context will be the DASS
token included in the GSSAPI token
"wrapper". The DASS token will include the optional principal name.

If mutual authentication is not requested in the GSSAPI
call, the mutual authentication token re­
turned by DASS will be ignored and the initial call will
return a COMPLETE status. If mutual
authentication is requested, the mutual authentication token
will be stored in the context informa­
tion and a CONTINUE_NEEDED status returned.

On the second call to GSS_Init_sec_context (with
input_context_handle non­zero), the returned
token will be compared to the one in the context
information using the Compare_mutual_token
procedure and a COMPLETE status will be returned if they match.

B.2.2.4 GSS_Accept_sec_context

This routine in GSSAPI accepts an incoming token and creates
a context. It combines the effects
of a series of DASS functions. It could be implemented as follows:

− Remove the GSSAPI "wrapper" from the incoming token and pass
the rest and the creden­
tials to "Accept_token". Accept_token produces a mutual
authentication token and a new
credentials structure. If delegation was requested, the
new credentials structure will be an
output of GSS_Accept_sec_context. In any case, it will be
used in the subsequent steps of
this procedure.

− Use the DASS Get_principal_name function to extract the
principal name from the creden­
tials produced by Accept_token. This name is one of the outputs of
"GSS_Accept_sec_context.

− Apply the DASS Verify_principal_name to the new credentials
and the retrieved name to
authenticate the token as having come from the named principal.

− Create and populate a context structure with the key and
timestamp returned by Ac­
cept_token and a status of COMPLETE. Return a handle to that context.

− If delegation was requested, return the new credentials from
GSS_Accept_sec_context. Oth­
erwise, call Delete_credentials.

− If mutual authentication was requested, wrap the mutual
authentication token from Ac­
cept_token in a GSSAPI "wrapper" and return it. Otherwise return a null string.

B.2.2.5 GSS_Delete_sec_context

This routine simply deletes the context state. No calls to DASS are required.

B.2.2.6 GSS_Sign

This routine takes as input a context handle and a message.
It creates a per_msg_token by com­
puting a digital signature on the message using the key and
timestamp in the context block. No
DASS services are required. If additional cryptographic
services were requested (replay detection

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 92

or sequencing), a timestamp or sequence number must be
prepended to the message and sent with
the signature. The syntax for this message is listed in section C.3.

B.2.2.7 GSS_Verify

This routine repeats the calculation of the sign routine and
verifies the signature provided. If re­
play detection or sequencing services are provided, the
context must maintain as part of its state
information containing the sequence numbers or timestamps
of messages already received and
this one must be checked for acceptability.

B.2.2.8 GSS_Seal

This routine performs the same functions as Sign but also
optionally encrypts the message for
privacy using the shared key and encapsulates the whole
thing in a GSSAPI specified ASN.1
wrapper.

B.2.2.9 GSS_Unseal

This routine performs the same functions as GSS_Verify but
also parses the data structure includ­
ing the signature and message and decrypts the message if necessary.

B.3 Syntax

The GSSAPI specification recommends the following ASN.1
encoding for the tokens and mes­
sages generated through the GSSAPI:

­­optional top­level token definitions to frame
­­ different mechanisms

GSSAPI DEFINITIONS ::=

BEGIN

MechType ::= OBJECT IDENTIFIER
­­ data structure definitions

ContextToken ::=
­­ option indication (delegation, etc.) indicated
­­ within mechanism­specific token
[APPLICATION 0] IMPLICIT SEQUENCE {

thisMech MechType,
responseExpected BOOLEAN,
innerContextToken ANY DEFINED BY MechType
­­ contents mechanism­specific

}

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 93

PerMsgToken ::=
­­ as emitted by GSS_Sign and processed by
­­ GSS_Verify
[APPLICATION 1] IMPLICIT SEQUENCE {

thisMech MechType,
innerMsgToken ANY DEFINED BY MechType
­­ contents mechanism­specific

}

SealedMessage ::=
­­ as emitted by GSS_Seal and processed by
­­ GSS_Unseal
[APPLICATION 2] IMPLICIT SEQUENCE {

sealingToken PERMSGTOKEN,
confFlag BOOLEAN,
userData OCTET STRING
­­ encrypted if confFlag TRUE

}

The object identifier for the DASS MechType is 1.3.12.2.1011.7.5.

The innerContextToken of a token is a DASS token or mutual authentication token.

The innerMsgToken is a null string in the case where the
message is encrypted and the token is
included as part of a SealedMessage. Otherwise, it is an
eight octet sequence computed as the
CBC residue computed using a key and string of bytes defined as follows:

− Pad the message provided by the application with 1­8
bytes of pad to produce a string whose
length is a multiple of 8 octets. Each pad byte has a value equal to
the number of pad bytes.

− Compute the key by taking the timestamp of the association
(two four byte integers laid out
in big endian order with the most significant integer
first), complementing the high order bit
(to avoid aliasing with mutual authenticators), and
encrypting the block in ECB mode with
the shared key of the association.

The userData field of a SealedMessage is exactly the
application provided byte string if conf­
Flag=FALSE. Otherwise, it is the application supplied message
encrypted as follows:

− Pad the message provided by the application with 1­8
bytes of pad to produce a string whose
length = 4 (mod 8). Each pad byte has a value equal to the number
of pad bytes.

− Append a four byte CRC32 computed over the message + pad.

− Compute a key by taking the timestamp of the association
(two four byte integers laid out in
big endian order with the most significant integer first),
complementing the high order bit (to

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 94

avoid aliasing with mutual authenticators), and encrypting
the block in ECB mode with the
shared key of the association.

− Encrypt the message + pad + CRC32 using CBC and the key computed in
the previous step.

A note of the logic behind the above:

− Because the shared key of an association may be reused by
many associations between the
same pair of principals, it is necessary to bind the
association timestamp into the messages
somehow to prevent messages from a previous association
being replayed into a new se­
quence. The technique above of generating an association
key accomplishes this and has a
side benefit. An implementation may with to keep the long
term keys out of the hands of
applications for purposes of confinement but may wish to put
the encryption associated with
an association in process context for reasons of
performance. Defining an association key
makes that possible.

− The reason that the association specific key is not
specified as the output of Create_token
and Accept_token is that the DCE RPC security implementation
requires that a series of as­
sociations between two principals always have the same key
and we did not want to have to
support a different interface in that application.

− The CRC32 after pad constitutes a cheap integrity check when data is encrypted.

− The fact that padding is done differently for encrypted and
signed messages means that there
are no threats related to sending the same message encrypted
and unencrypted and using the
last block of the encrypted message as a signature on the unencrypted one.

Internet Draft DASS 10 December 1992

Charles Kaufman Page 95

Annex C
Imported ASN.1 definitions

This annex contains extracts from the ASN.1 description of X.509 and X.500
definitions referenced by the DASS ASN.1 definitions.

CCITT DEFINITIONS ::=

BEGIN
joint­iso­ccitt OBJECT IDENTIFIER ::= {2}
ds OBJECT IDENTIFIER ::= {joint­iso­ccitt 5}
algorithm OBJECT IDENTIFIER ::= {ds 8}

iso OBJECT IDENTIFIER ::= {1}
identified­organization OBJECT IDENTIFIER ::= {iso 3}
ecma OBJECT IDENTIFIER ::= {identified­organization 12}
digital OBJECT IDENTIFIER ::= { ecma 1011 }

­­ X.501 definitions

AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY

­­ useful ones are
­­ OCTET STRING ,
­­ PrintableString ,
­­ NumericString ,
­­ T61String ,
­­ VisibleString

AttributeValueAssertion ::= SEQUENCE {AttributeType, AttributeValue}

Name ::= CHOICE {­­ only one possibility for now ­­
RDNSequence}

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

DistinguishedName ::= RDNSequence

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 96

RelativeDistinguishedName ::= SET OF AttributeValueAssertion

­­ X.509 definitions

Certificate ::= SIGNED SEQUENCE {
version [0] Version DEFAULT 1988 ,
serialNumber SerialNumber ,
signature AlgorithmIdentifier ,
issuer Name,
valid Validity,
subject Name,
subjectPublicKey SubjectPublicKeyInfo }

Version ::= INTEGER { 1988(0)}

SerialNumber INTEGER

Validity ::= SEQUENCE{
notBefore UTCTime,
notAfter UTCTime}

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier ,
subjectPublicKey BIT STRING
}

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER ,
 parameters ANY DEFINED BY algorithm OPTIONAL}

ALGORITHM MACRO
BEGIN
TYPE NOTATION ::= "PARAMETER" type
VALUE NOTATION ::= value (VALUE OBJECT IDENTIFIER)
END ­­ of ALGORITHM

ENCRYPTED MACRO
BEGIN
TYPE NOTATION ::=type(ToBeEnciphered)
VALUE NOTATION ::= value(VALUE BIT STRING)

­­ the value of the bit string is generated by
­­ taking the octets which form the complete
encoding (using the ASN.1 Basic Encoding Rules)
­­ of the value of the ToBeEnciphered type and
­­ applying an encipherment procedure to those octets­­

END

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 97

SIGNED MACRO ::=
BEGIN
TYPE NOTATION ::= type (ToBeSigned)
VALUE NOTATION ::= value(VALUE
SEQUENCE{

ToBeSigned,
AlgorithIdentifier, ­­ of the algorithm used to generate the signa­

ture
ENCRYPTED OCTET STRING
­­ where the octet string is the result
­­ of the hashing of the value of
"ToBeSigned"

END ­­ of SIGNED

SIGNATURE MACRO ::=
BEGIN
TYPE NOTATION ::= type(OfSignature)
VALUE NOTATION ::= value(VALUE

SEQUENCE{
AlgorithmIdentifier,
­­ of the algorithm used to compute the signature
ENCRYPTED OCTET STRING
­­ where the octet string is a function (e.g. a compressed

or
­­ hashed version) of the value "OfSignature", which may
­­ include the identifier of the algorithm used to compute
­­ the signature­­}

)
END ­­ of SIGNATURE

­­ X.509 Annex H (not part of the standard)

encryptionAlgorithm OBJECT IDENTIFIER ::= {algorithm 1}

rsa ALGORITHM
PARAMETER KeySize
::= {encryptionAlgorithm 1}

KeySize ::= INTEGER

END

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 98

Glossary

authentication The process of determining the identity (usually the name)
of the other party in
some communication exchange.

authentication context
Cached information used during a particular instance of
authentication and including a
shared symmetric (DES) key as well as components of the
authentication token conveyed
during establishment of this context.

authentication token
Information conveyed during a strong authentication exchange
that can be used to authen­
ticate its sender. An authentication token can, but is not
necessarily limited to, include the
claimant identity and ticket, as well as signed and
encrypted secret key exchange mes­
sages conveying a secret key to be used in future
cryptographic operations. An authentica­
tion token names a particular protocol data structure component.

authorization The process of determining the rights associated with a particular principal.

certificate The public key of a particular principal, together with some
other information
relating to the names of the principal and the certifying
authority, rendered unforgeable by
encipherment with the private key of the certification authority that issued it.

certification authority
An authority trusted by one or more principals to create and assign
certificates.

claimant The party that initiates the authentication process. In the
DASS architecture,
claimants possess credentials which include their identity,
authenticating private key and
a ticket certifying their authenticating public key.

credentials Information "state" required by principals in order to for
them to authenticate.
Credentials may contain information used to initiate the
authentication process (claimant
information), information used to respond to an
authentication request (verifier informa­
tion), and cached information useful in improving performance.

cryptographic checksum
Information which is derived by performing a cryptographic
transformation on the data
unit. This information can be used by the receiver to verify
the authenticity of data passed
in cleartext

decipher To reverse the effects of encipherment and render a message
comprehensible
by use of a cryptographic key.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 99

delegation The granting of temporary credentials that allow a process
to act on behalf of a
principal.

delegation key A short term public/private key pair used by a claimant to
act on behalf of a
principal for a bounded period. The delegation public key
appears in the ticket, whereas
the delegation private key is used to sign secret key exchange messages.

DES Data Encryption Standard: a symmetric (secret key)
encryption algorithm used
by DASS. An alternate encryption algorithm could be
substituted with little or no disrup­
tion to the architecture.

DES key A 56­bit secret quantity used as a parameter to the DES encryption algorithm.

digital signature A value computed from a block of data and a key which could
only be com­
puted by someone knowing the key. A digital signature
computed with a secret key can
only be verified by someone knowing that secret key. A
digital signature computed with
a private key can be verified by anyone knowing the corresponding public key.

encipher To render incomprehensible except to the holder of a
particular key. If you en­
cipher with a secret key, only the holder of the same secret
can decipher the message. If
you encipher with a public key, only the holder of the
corresponding private key can deci­
pher it.

initial trust certificate
A certificate signed by a principal for its own use which
states the name and public key of
a trusted authority.

global user nameA hierarchical name for a user which is unique within the
entire domain of dis­
cussion (typically the network).

local user name A simple (non­hierarchical) name by which a user is
known within a limited
context such as on a single computer.

principal Abstract entity which can be authenticated by name. In DASS
there are user
principals and server principals.

private key Cryptographic key used in asymmetric (public key)
cryptography to decrypt
and/or sign messages. In asymmetric cryptography, knowing
the encryption key is inde­
pendent of knowing the decryption key. The decryption (or
signing) private key cannot be
derived from the encrypting (or verifying) public key.

proxy A mapping from an external name to a local account name for
purposes of es­
tablishing a set of local access rights. Note that this
differs from the definition in ECMA
TR/46.

public key Cryptographic key used in asymmetric cryptography to encrypt messages
and/or verify signatures.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 100

RSA The Rivest­Shamir­Adelman public key cryptosystem
based on modular expo­
nentiation where the modulus is the product of two large
primes. When the term RSA key
is used, it should be clear from context whether the public
key, the private key, or the
public/private pair is intended.

secret key Cryptographic key used in symmetric cryptography to
encrypt, sign, decrypt
and verify messages. In symmetric cryptography, knowledge
of the decryption key im­
plies knowledge of the encryption key, and vice­versa.

sign A process which takes a piece of data and a key and produces
a digital signa­
ture which can only be calculated by someone with the key.
The holder of a correspond­
ing key can verify the signature.

source The initiator of an authentication exchange.

strong authentication
Authentication by means of cryptographically derived
authentication tokens and creden­
tials. The actual working definition is closer to that of
"zero knowledge" proof: authenti­
cation so as to not reveal any information usable by either
the verifier, or by an eaves­
dropping third party, to further their potential ability to
impersonate the claimant.

target The intended second party (other than the source) to an
authentication ex­
change.

ticket A data structure certifying an authenticating (public)
key by virtue of being
signed by a user principal using their (long term) private
key. The ticket also includes the
UID of the principal.

trusted authorityThe public key, name and UID of a certification authority
trusted in some con­
text to certify the public keys of other principals.

UID A 128 bit unique identifier produced according to OSF standard specifications.

user key A "long term" RSA key whose private portion authenticates
its holder as hav­
ing the access rights of a particular person.

verify To cryptographically process a piece of data and a digital
signature to deter­
mine that the holder of a particular key signed the data.

verifier The party who will perform the operations necessary to
verify the claimed
identity of a claimant.

Internet Draft DASS 10 December 1992

Kaufman Document Expiration: 10 June 1993 Page 101

Author’s Address:

Charles Kaufman
Digital Equipment Corporation
LKG 1­2/A19
550 King Street
Littleton, MA 01460

Phone: (508) 486­7329

Email: kaufman@dsmail.enet.dec.com

General comments on this document should be sent to
cat­ietf@mit.edu. Minor corrections
should be sent to the author.

